SDG2000X 系列 函数/任意波形发生器

用户手册 CN02G

> 深圳市鼎阳科技股份有限公司 SIGLENT TECHNOLOGIES CO., LTD.

版权信息

深圳市鼎阳科技股份有限公司版权所有。

本手册提供的信息取代以往出版的所有资料。

本公司保留改变规格及价格的权利。

未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。

注: SIGLENT®是深圳市鼎阳科技股份有限公司的注册商标

一般安全概要

了解下列安全性预防措施,以避免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。为了避免可能发生的危险,请务必按照规定使用本产品。

只有合格的技术人员才可执行维修程序

防止火灾或人身伤害

使用适当的电源线 只可使用所在国家认可的本产品专用电源线。

将产品接地 本产品通过电源线接地导体接地。为了防止电击,接地导体必须与大地相连。在与本产品输入或输出终端连接前,请务必将本产品正确接地。

正确连接信号线 信号地线与地电势相同,请勿将地线连接到高电压上。在测试过程中,请勿触摸裸露的接点和部件。

查看所有终端的额定值 为了防止火灾或电击危险,请查看本产品的所有额定值和标记说明。在连接产品前,请阅读本产品手册,以便进一步了解有关额定值的信息。

怀疑产品出现故障时,请勿操作 如怀疑本产品有损坏,请让合格的维修人员进行检查。

避免电路外露 电源接通后请勿接触外露的接头和元件。

勿在潮湿环境下操作

勿在易燃易爆环境中操作

保持产品表面清洁和干燥

安全术语和标记

本产品上使用的术语 本产品上会出现如下术语:

DANGER: 表示标记附近有直接伤害危险存在。

WARNING: 表示标记附近有潜在的伤害危险。

CAUTION: 表示对本产品及其他财产有潜在的危险。

本产品上使用的标记 本产品上可能出现如下标记:

警告高压

保护性终端

小心

机壳地

电源开关

SDG2000X 系列函数/任意波形发生器简介

SDG2000X 系列双通道函数/任意波形发生器,最大带宽 100MHz,采样系统具备 1.2GSa/s 采样率和 16-bit 垂直分辨率的优异指标,在传统的 DDS 技术基础上,采用了创新的 TrueArb 和 EasyPulse 技术,克服了 DDS 技术在输出任意波和方波/脉冲时的先天缺陷,能够为用户提供高保真、低抖动的信号;具备调制、扫频、Burst、谐波发生、通道合并等多种复杂波形的产生能力,能够满足用户更广泛的需求。

下面给出其性能特点,方便您更深地了解 SDG2000X 的技术指标。

- 双通道,最大输出频率 100MHz,最大输出幅度 20Vpp,在 80dB 的动态范围内提供高保真的信号
- 优异的采样系统指标: 1.2GSa/s 采样率和 16-bit 垂直分辨率, 最大限度地在时间和幅度上还原波形细节
- 创新的 TrueArb 技术,逐点输出任意波,在保证不丢失波形细节的前提下,能够以 1µSa/s~75MSa/s 的可变采样率输出 8pts~8Mpts 范围内任意长度的低抖动波形
- 创新的 EasyPulse 技术,能够输出低抖动的方波/脉冲,同时脉冲波可以做到脉宽、上升/下降 沿精细可调,具备极高的调节分辨率和调节范围
- 丰富的模拟和数字调制功能: AM、DSB-AM、FM、PM、FSK、ASK、PSK 和 PWM
- 扫频功能与 Burst 功能
- 谐波发生功能
- 通道合并功能
- 硬件频率计功能
- 196 种内建任意波
- 丰富的通信接口:标配 USB Host, USB Device (USBTMC), LAN (VXI-11),选配 GPIB
- 4.3 英寸 TFT-LCD 触摸显示屏,方便用户操作

目录

版	权信,	息		1
— <u>;</u>	般安:	全概要		2
安	全术i	语和标	记	2
SD	G20	00X 系		3
1			括	
'				
	1.1		手柄	
	1.2		后面板简介	
	1.3 1.4		屏显示区	
	1.4	系统. 1.4.1	<u> </u>	
		1.4.1		
		1.4.2	通道输出控制	
		1.4.4	数字输入控制	
		1.4.5	常用功能按键	
2	古 4		简介	
_				
	2.1	你/隹》 2.1.1	波形设置	
		2.1.1	设置方波	
		2.1.2	设置三角波	
		2.1.3	设置::::::::::::::::::::::::::::::::::::	
		2.1.4	设置噪声	
		2.1.6	设置直流	
			设置任意波	
	2.2		设置	
	2.3		/扫频/脉冲串设置	
		2.3.1	幅度调制(AM)	
		2.3.2	双边带调幅(DSB-AM)	51
		2.3.3	频率调制(FM)	52
		2.3.4	相位调制(PM)	54
		2.3.5	频移键控(FSK)	56
		2.3.6	幅移键控(ASK)	57

		2.3.7	相移键控(P:	SK) .	58
		2.3.8	脉宽调制(P	WM)	 60
		2.3.9	扫频		 63
		2.3.10	脉冲串		 66
	2.4	存储	ラ调用		 70
		2.4.1	存储系统		 71
		2.4.2	文件类型		 72
		2.4.3	文件操作		 73
	2.5	辅助〕	功能设置		 76
		2.5.1	系统设置		77
		2.5.2	检测/校准		90
		2.5.3	频率计		94
		2.5.4	输出设置		96
		2.5.5	通道复制和耦	合	 99
		2.5.6	接口设置		 103
		2.5.7	同步		108
		2.5.8	时钟源		109
		2.5.9	模式		110
		2.5.10	过压保护		111
		2.5.11	多设备同步		112
3	应月	用实例:			 113
	3.1	输出ī	下弦波波形		 114
	3.2				
	3.3				
	3.4				
	3.5	输出	吳声		118
	3.6	输出组	线性扫描波形.		119
	3.7	输出原	永冲串波形		 120
	3.8				
	3.9				
	3.10) 输出	FM 调制波形		 123
	3.11				
	3.12				
	3.13	3 输出	ASK 调制波形		126

SDG2000X 用户手册

	3.14	输出 PSK 调制波形	127
	3.15	输出 PWM 调制波形	128
4	一般	性检查及故障排除	129
	4.1	一般性检查	129
	4.2	故障排除	129
5	服务	和支持	130
		保修概要	
	5.2	联系我们	130
附录	₹ A		131
附录	₹ B		132
附录	₹ C		135

1 一般性概括

本章主要阐述以下内容:

- 1.1 调整手柄
- 1.2 前、后面板简介
- 1.3 触摸屏显示区
- 1.4 系统功能设置简介
 - 1.4.1 波形选择设置
 - 1.4.2 调制/扫频/脉冲串设置
 - 1.4.3 通道输出控制
 - 1.4.4 数字输入控制
 - 1.4.5 常用功能按键

1.1 调整手柄

SDG2000X 手柄的位置可以自由调整。首先握住仪器两侧的手柄并向外拉,然后将手柄转到所需的位置即可。如图所示:

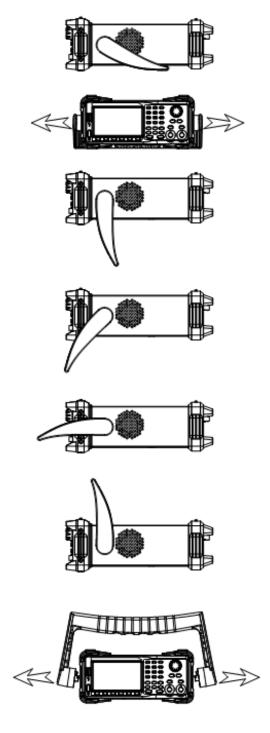


图 1-1 SDG2000X 手柄位置示意图

1.2 前、后面板简介

SDG2000X 采用 4.3 英寸 TFT-LCD 显示,人性化的界面布局,恰到好处的按键设置。本章对前、后面板的操作及功能简单的描述和介绍,旨在用最短的时间使用户熟悉 SDG2000X 的功能设置和使用。

前面板总览

SDG2000X 向用户提供了明晰、简洁的前面板,如图所示。前面板包括: 4.3 英寸触摸屏、菜单键、数字键盘、常用功能按键区、方向键、旋钮和通道输出控制区等。

图 1-2 SDG2000X 前面板

后面板总览

SDG2000X 的后面板为用户提供了丰富的接口,包括频率计接口、10MHz 时钟输入/输出端、多功能输入/输出端、USB Device、LAN 接口、电源插口和专用的接地端子等,如图 1-3 所示:

图 1-3 SDG2000X 后面板

1.3 触摸屏显示区

SDG2000X 的界面上只能显示一个通道的参数和波形。下图所示为 CH1 选择正弦波的 AM 调制时的界面。基于当前功能的不同,界面显示的内容会有所不同。

SDG2000X 整个屏幕都是触摸屏。您可以使用手指或触控笔进行触控操作,大部分的显示和控制都可以通过触摸屏实现,效果等同于按键和旋钮。

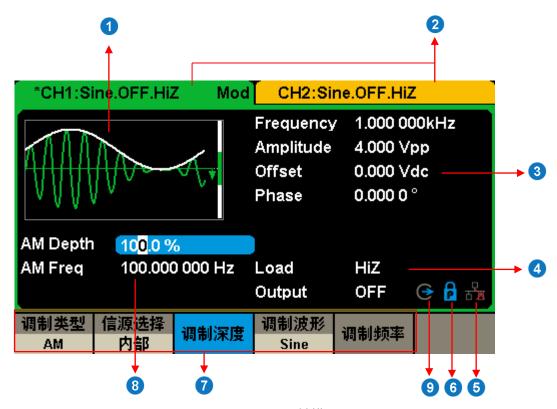


图 1-4 SDG2000X 触摸屏显示区

1. 波形显示区

显示各通道当前选择的波形,点击此处的屏幕, Waveforms 按键灯将变亮。

2. 通道输出配置状态栏

CH1 和 CH2 的状态显示区域,指示当前通道的选择状态和输出配置。点击此处的屏幕,可以切换至相应的通道。再点击一次此处的屏幕,可以调出前面板功能键的快捷菜单:Mod、Sweep、Burst、Parameter、Utility 和 Store/Recall。

3. 基本波形参数区

显示各通道当前波形的参数设置。点击所要设置的参数,可以选中相应的参数区使其突出显示,然后通过数字键盘或旋钮改变该参数。

4. 通道参数区

显示当前选择通道的负载设置和输出状态。

Load — 负载

选中相应的参数使其突出显示,然后通过菜单软键、数字键盘或旋钮改变该参数;长按相应的 Output 键 2 秒即可在高阻和 50Ω 键切换。

高阻:显示HiZ;

负载:显示阻值 (默认为 50Ω , 范围为 50Ω 至 $100k\Omega$)。

Output — 输出

点击此处的屏幕,或按相应的通道输出控制端,可以打开或关闭当前通道。

ON: 打开;

OFF: 关闭。

5. 网络状态提示符

SDG2000X 会根据当前网络的连接状态给出不同的提示:

表示网络连接正常。

🚜 表示没有网络连接或网络连接失败。

6. 模式提示符

SDG2000X 会根据当前选择的模式给出不同的提示:

🕞 表示当前选择的模式为相位锁定。

🚹 表示当前选择的模式为独立通道。

7. 菜单

显示当前已选中功能对应的操作菜单。例如:上图显示"正弦波的 AM 调制"的菜单。在屏幕上点击 菜单选项,可以选中相应的参数区,再设置所需要的参数。

8. 调制参数区

显示当前通道调制功能的参数。点击此处的屏幕,或选择相应的菜单后,通过数字键盘或旋钮改 变参数。

9. 时钟源提示符

显示当前使用的时钟源:

- 表示使用内部时钟
- 🚱 表示没有可用的外部时钟
- € 表示使用外部时钟

1.4 系统功能设置简介

本节主要介绍 SDG2000X 功能设置,主要包括波形选择设置、调制/扫频/脉冲串设置、通道输出控制、数字输入控制及常用功能按键介绍。

1.4.1 波形选择设置

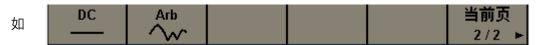


图 1-5 所示,在 Waveforms 操作界面下有一列波形选择按键,分别为正弦波、方波、三角波、脉冲波、高斯白噪声、DC 和任意波。下面对其波形设置逐一进行介绍:

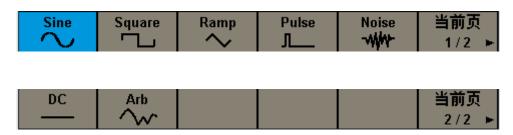


图 1-5 常用的 7 种波形

选择 Waveforms → Sine ,通道输出配置状态栏显示"Sine"字样。SDG2102X 可输出 1μHz 到 100MHz 的正弦波。设置频率/周期、幅值/高电平、偏移量/低电平、相位,可以得到不同参数的正弦波。如图 1-6 所示,为正弦波的设置界面。

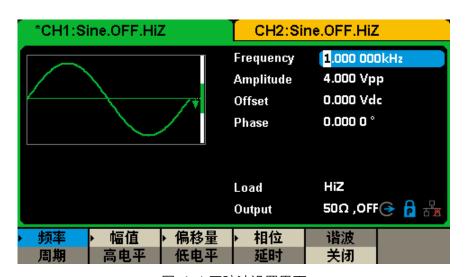


图 1-6 正弦波设置界面

选择 Waveforms → Square ,通道输出配置状态栏显示"Square"字样。SDG2000X 可输出 1µHz 到 25MHz 并具有可变占空比的方波。设置频率/周期、幅值/高电平、偏移量/低电平、相位、占空比,可以得到不同参数的方波。如图 1-7 所示,为方波的设置界面。

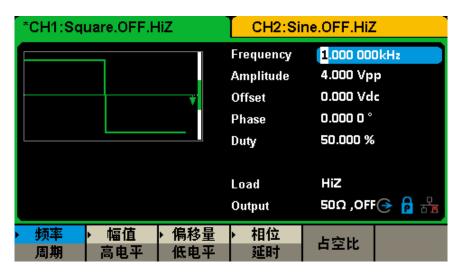


图 1-7 方波设置界面

选择 Waveforms → Ramp ,通道输出配置状态栏显示"Ramp"字样。SDG2000X 可输出 1µHz 到 1MHz 的三角波。设置频率/周期、幅值/高电平、偏移量/低电平、相位、对称性,可以得到不同参数的三角波。如图 1-8 所示,为三角波的设置界面。

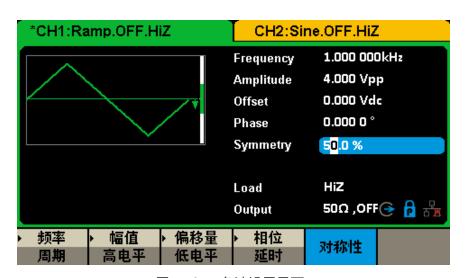


图 1-8 三角波设置界面

选择 Waveforms → Pulse ,通道输出配置状态栏显示"Pulse"字样。SDG2000X 可输出 1µHz 到 25MHz 的脉冲波。设置频率/周期、幅值/高电平、偏移量/低电平、脉宽/占空比、上升沿/下降沿、延迟,可以得到不同参数的脉冲波。如图 1-9 所示,为脉冲波的设置界面。

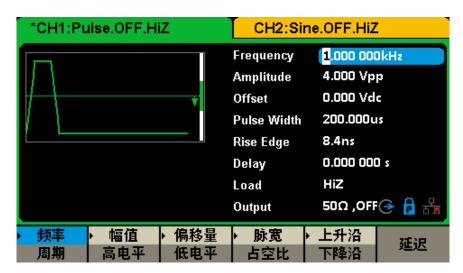


图 1-9 脉冲波设置界面

选择 Waveforms → Noise , 通道输出配置状态栏显示"Noise"字样。SDG2000X 可输出带宽为 20MHz 至 120MHz 的噪声。设置标准差、均值和带宽,可以得到不同参数的噪声。如图 1-10 所示,为噪声的设置界面。

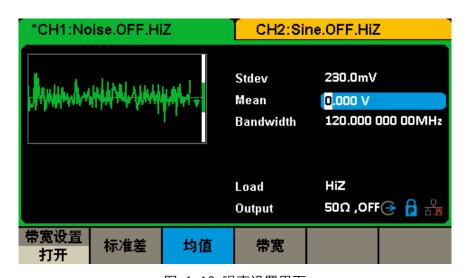


图 1-10 噪声设置界面

选择 Waveforms \rightarrow 当前页 1/2 \rightarrow DC ,通道输出配置状态栏显示"DC"字样。 SDG2000X 可输出高阻负载下 $\pm 10V$ 、 50Ω 负载下 $\pm 5V$ 的直流。如图 1-11 所示,为 DC 输出的设置界面。

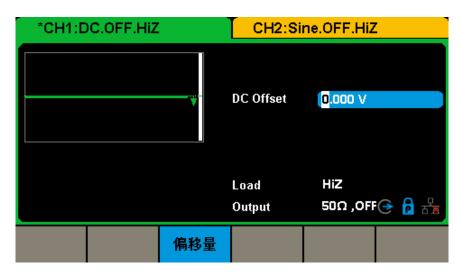


图 1-11 DC 设置界面

选择 Waveforms \rightarrow 当前页 1/2 \rightarrow Arb ,通道输出配置状态栏显示"Arb"字样。 SDG2000X 可输出 1μ Hz 到 20MHz、波形长度为 8pts 到 8MKpts 的任意波。设置频率/周期、幅值/高电平、偏移量/低电平、相位、模式,可以得到不同参数的任意波。如图 1-12 所示,为任意波的设置界面。

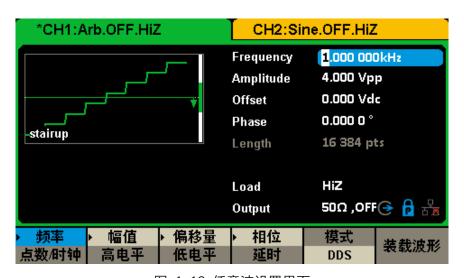


图 1-12 任意波设置界面

1.4.2 调制/扫频/脉冲串设置

如图 1-13 所示, 在 SDG2000X 的前面板有三个按键, 分别为调制、扫频、脉冲串设置功能按键。

图 1-13 调制、扫频、脉冲串设置功能按键

使用 | Mod | 按键,可输出经过调制的波形

SDG2000X 可使用 AM、DSB-AM、FM、PM、FSK、ASK、PSK 和 PWM 调制类型,可调制正弦波、方波、三角波、脉冲波和任意波。通过改变调制类型、信源选择、调制频率、调制波形和其它参数,来改变调制输出波形。SDG2000X 的调制界面如图 1-14 所示:

图 1-14 调制界面

使用「Sweep」按键,可输出正弦波、方波、三角波和任意波的扫频波形

在扫频模式中,SDG2000X 在指定的扫描时间内扫描设置的频率范围。扫描时间可设定为 1ms ~500s,触发方式可设置为内部、外部和手动。SDG2000X 的扫频界面如图 1-15 所示:

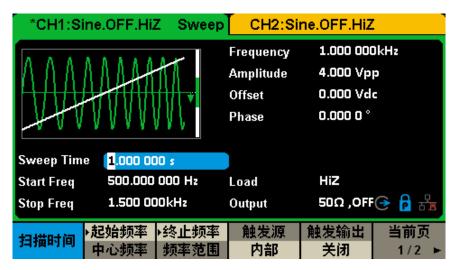


图 1-15 扫频界面

使用「Burst」按键,可以产生正弦波、方波、三角波、脉冲波和任意波的脉冲串输出

可设定起始相位: 0°~360°, 内部周期: 1µs~1000s。SDG2000X的脉冲串界面如图 1-16 所示:

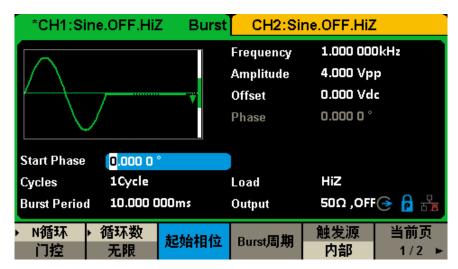


图 1-16 脉冲串界面

1.4.3 通道输出控制

在 SDG2000X 方向键的下面有两个输出控制按键,如图 1-17 所示。使用 Output 按键,将开启/关闭前面板的输出接口的信号输出。选择相应的通道,按下 Output 按键,该按键灯被点亮,同时打开输出开关,输出信号;再次按 Output 按键,将关闭输出。

长按 Output 按键可在"50Ω"和"HiZ"之间快速切换负载设置。

图 1-17 输出控制按键

1.4.4 数字输入控制

如下图 1-18 所示,在 SDG2000X 的操作面板上有 3 组按键,分别为数字键盘、旋钮和方向键。 下面对其数字输入功能的使用进行简单的说明。

图 1-18 数字按键、旋钮和方向键

数字键盘

用于编辑波形时参数值的设置,直接键入数值可改变参数值。

旋钮

用于改变波形参数中某一数位的值的大小, 旋钮顺时针旋转一格, 递增 1; 旋钮逆时针旋转一格, 递减 1。

方向键

使用旋钮设置参数时,用于移动光标以选择需要编辑的位。

使用数字键盘输入参数时,用于删除光标左边的数字。

文件名编辑时,用于移动光标选择文件名输入区中指定的字符。

1.4.5 常用功能按键

SDG2000X 的面板下方有五个按键,如图 1-19 所示,分别为参数设置、辅助系统功能设置、存储与调用、波形和通道切换按键。下面对它们的使用进行简单的说明。

图 1-19 功能按键

Waveforms

用于选择基本波形。

Utility

用于对辅助系统功能进行设置,包括频率计、输出设置、接口设置、系统设置、仪器自检和版本 信息的读取等。

Parameter

用于设置基本波形参数,方便用户直接进行参数设置。

Store/Recall

用于存储、调出波形数据和配置信息。

Ch1/Ch2

用于切换 CH1 或 CH2 为当前选中通道。开机时,仪器默认选中 CH1,用户界面中 CH1 对应的区域高亮显示,且通道状态栏边框显示为绿色;此时按下此键可选中 CH2,用户界面中 CH2 对应的区域高亮显示,且通道状态栏边框显示为黄色。

2 高级运用简介

本章主要介绍 SDG2000X 的主要功能及其操作方法。

本章主要阐述以下内容:

- 2.1 标准波形设置
- 2.2 谐波设置
- 2.3 调制/扫频/脉冲串设置
- 2.4 存储与调用
- 2.5 辅助功能设置

2.1 标准波形设置

SDG2000X 有 7 种标准波形,分别为正弦波、方波、三角波、脉冲波、噪声、直流和任意波形,下面对其的参数设置逐一进行介绍。

2.1.1 设置正弦波

选择 Waveforms → Sine ,触摸屏显示区中将出现正弦波的操作菜单,通过对正弦波的波形参数进行设置,可输出相应波形。设置正弦波的参数主要包括:频率/周期、幅值/高电平、偏移量/低电平、相位。如图 2-1 所示。

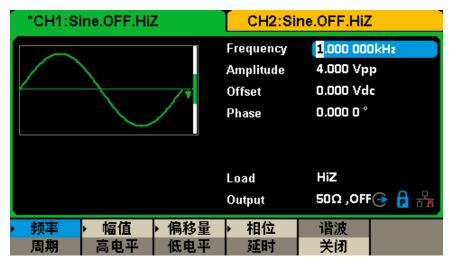


图 2-1 正弦波参数显示界面

表 2-1 Sine 波形操作菜单说明

功能菜单	设置说明
频率/周期	设置波形频率/周期,按下相应的功能按键可上下切换
幅值/高电平	设置波形幅值/高电平,按下相应的功能按键可上下切换
偏移量/低电平	设置波形偏移量/低电平,按下相应的功能按键可上下切换
相位	设置波形相位

设置频率/周期

频率是基本波形最重要的参数之一,基于不同的仪器型号和不同的波形,频率可设置的范围不同, 具体请参考数据手册中相关说明。默认值为 1kHz。

选择 Waveforms → Sine → 频率 ,可设置频率参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值;否则使用该波形的限定值。当再次按下相应功能键时,可修改周期。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后选择相应的参数单位即可,如图 2-2 所示。可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮改变该位的数值。

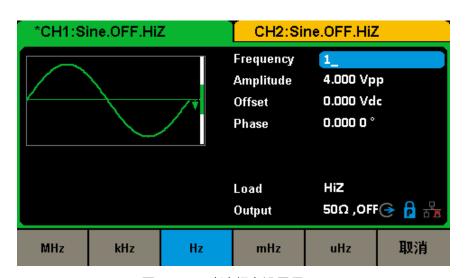


图 2-2 正弦波频率设置界面

备注: 当使用数字键盘输入数值时,使用方向键左键向前移位,效果是删除前一位值,直接输入 具体的数值可改变该位参数值。

设置幅值/高电平

幅值的可设置范围受"阻抗"和"频率/周期"的限制,具体请参考数据手册中相关说明。

选择 Waveforms → Sine → 幅值 ,可设置幅值参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。当再次按下相应功能键时,可修改高电平。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-3 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

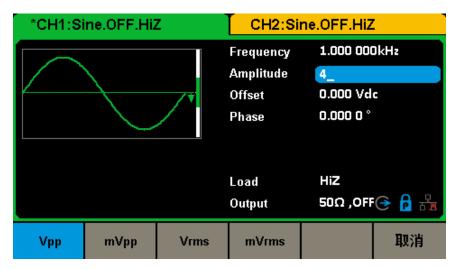


图 2-3 正弦波幅值设置界面

设置偏移量/低电平

偏移量的可设置范围受"阻抗"和"幅值/高电平"的限制,具体请参考数据手册中相关说明。默认值为 0Vdc。

选择 Waveforms → Sine → 偏移量 ,可设置偏移量参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。当再次按下相应功能键时,可修改低电平。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-4 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

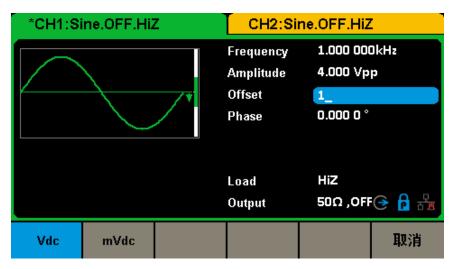


图 2-4 正弦波偏移量设置界面

设置输出相位

波形相位的可设置范围为-360°至360°。默认值为0°。

选择 Waveforms → Sine → 偏移量 ,可设置相位参数值。在更改参数时,如果当前的 参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-5 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

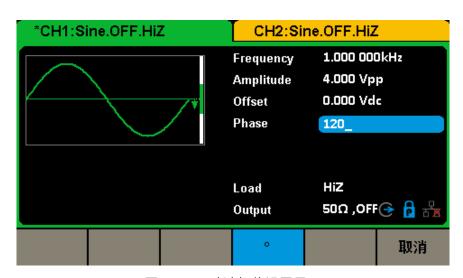
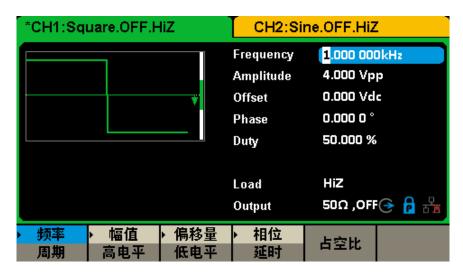


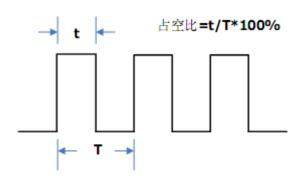
图 2-5 正弦波相位设置界面

备注:在"独立通道"模式下,相位不可设置。

2.1.2 设置方波

选择 Waveforms → Square ,触摸屏显示区中将出现方波的操作菜单,通过对方波的波形 参数进行设置,可输出相应波形。设置方波的参数主要包括:频率/周期、幅值/高电平、偏移量/低电平、相位、占空比。如图 2-6 所示:




图 2-6 方波参数显示界面

功能菜单设置说明频率/周期设置波形频率/周期,按下相应的功能按键可上下切换幅值/高电平设置波形幅值/高电平,按下相应的功能按键可上下切换偏移量/低电平设置波形偏移量/低电平,按下相应的功能按键可上下切换相位设置波形相位占空比设置波形占空比

表 2-2 Square 波形操作菜单说明

设置方波占空比

方波占空比定义为,方波波形高电平持续的时间所占周期的百分比。

选择 Waveforms → Square → 占空比 ,可设置占空比参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-7 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

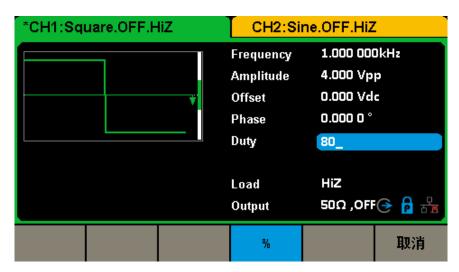
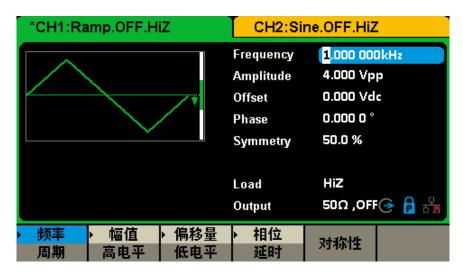


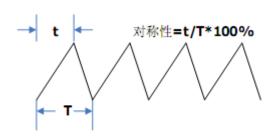
图 2-7 方波占空比设置界面

备注: 方波信号其它参数的设置方法请参考正弦信号。

2.1.3 设置三角波

选择 Waveforms → Ramp ,触摸屏显示区中将出现三角波的操作菜单,通过对三角波的波形参数进行设置,可输出相应波形。设置三角波的参数主要包括:频率/周期、幅值/高电平、偏移量/低电平、相位、对称性。如图 2-8 所示:




图 2-8 三角波参数显示界面

功能菜单	设置说明
频率/周期	设置波形频率/周期,按下相应的功能按键可上下切换
幅值/高电平	设置波形幅值/高电平,按下相应的功能按键可上下切换
偏移量/低电平	设置波形偏移量/低电平,按下相应的功能按键可上下切换
相位	设置波形相位
对称性	设置三角波的对称性

表 2-3 Ramp 波形操作菜单说明

设置对称性

对称性定义为,设置三角波形处于上升期间的时间所占周期的百分比。可设定范围: 0~100%。 默认值为50%。

选择 Waveforms → Ramp → 对称性 ,可设置对称性百分比数值。屏幕中显示的对称性百分比数值为本机的默认值,或者是上次设置值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限制值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-9 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

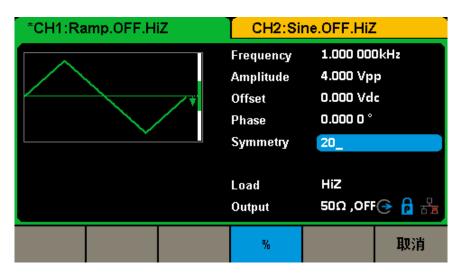


图 2-9 三角波对称性设置界面

备注:三角波信号其它参数的设置方法请参考正弦信号。

2.1.4 设置脉冲波

选择 Waveforms → Pulse , 触摸屏显示区中将出现脉冲波的操作菜单, 通过对脉冲波的波形参数进行设置, 可输出相应波形。设置脉冲波的参数主要包括: 频率/周期、幅值/高电平、偏移量/低电平、脉宽/占空比、上升沿/下降沿、延迟。如图 2-10 所示:

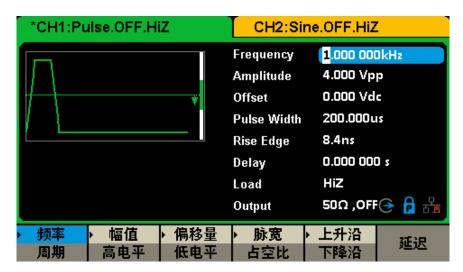


图 2-10 脉冲波参数显示界面

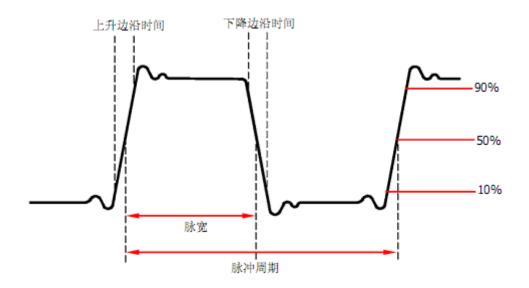

功能菜单	设置说明
频率/周期	设置波形频率/周期,按下相应的功能按键可上下切换
幅值/高电平	设置波形幅值/高电平,按下相应的功能按键可上下切换
偏移量/低电平	设置波形偏移量/低电平,按下相应的功能按键可上下切换
脉宽/占空比	设置波形脉宽/占空比,按下相应的功能按键可上下切换
上升沿/下降沿	设置波形上升沿/下降沿,按下相应的功能按键可上下切换
延迟	设置波形延迟时间

表 2-4 Pulse 波形操作菜单说明

设置脉宽/占空比

脉宽定义为,从脉冲上升沿幅度的 50%处到相邻下降沿的 50%处之间的时间间隔。脉宽的可设置范围受"最小脉冲宽度"和"脉冲周期"的限制,具体请参考数据手册中相关说明。默认值为 200μs。

占空比定义为,正脉宽占脉冲周期的百分比。占空比与脉宽相关联,修改其中一个参数将自动修 改另一个参数。

选择 Waveforms → Pulse → 脉冲宽度 ,可设置脉冲宽度数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-11 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

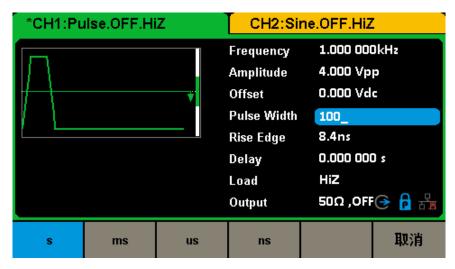


图 2-11 脉冲波脉宽设置界面

设置上升沿/下降沿

上升沿时间定义为,脉冲幅度从 10%上升至 90%所持续的时间;下降沿时间定义为,脉冲幅度从 90%下降至 10%所持续的时间。上升沿/下降沿时间的可设置范围受当前指定的脉宽限制。默认值为 8.4ns。上升沿时间和下降沿时间相互独立,允许用户单独进行设置。

选择 | Waveforms | → | Pulse | → | 上升沿 , 可设置脉冲上升沿数值。在更改参数时, 如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-12 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

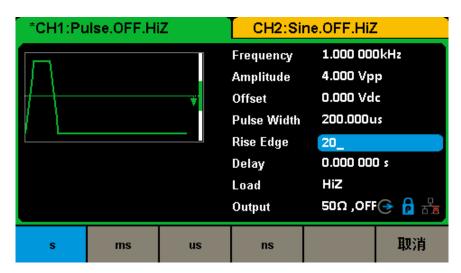


图 2-12 脉冲上升沿设置界面

备注:脉冲波信号其它参数的设置方法请参考正弦信号。

2.1.5 设置噪声

选择 Waveforms → Noise , 触摸屏显示区中将出现噪声的操作菜单, 通过对噪声的波形参数进行设置, 可输出相应波形。设置噪声的参数主要包括:标准差、均值和带宽。如图 2-13 所示:

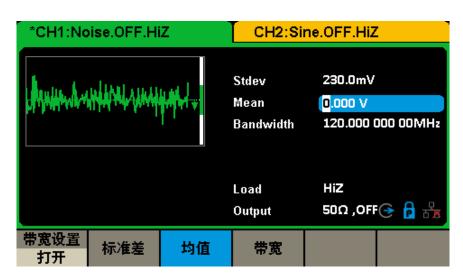


图 2-13 噪声参数显示界面

功能菜单	设置说明
标准差	设置噪声的标准差
均值	设置噪声的均值
带宽	设置噪声带宽

表 2-5 Noise 波形操作菜单说明

设置标准差

选择 Waveforms → Noise → 标准差 ,可设置标准差参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-14 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

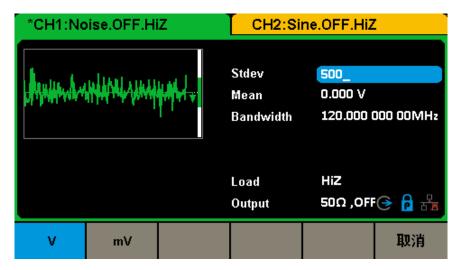


图 2-14 噪声标准差设置界面

设置均值

选择 Waveforms → Noise → 均值 ,可设置均值参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-15 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

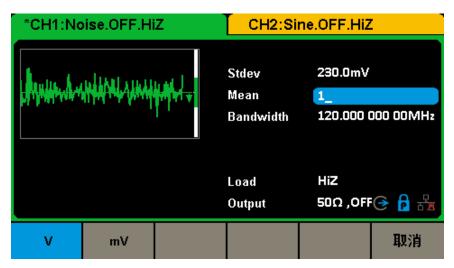


图 2-15 噪声均值设置界面

设置带宽

选择 Waveforms → Noise → 带宽设置 ,打开带宽设置后,选择 带宽 ,可设置带宽 参数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限

定值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-16 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

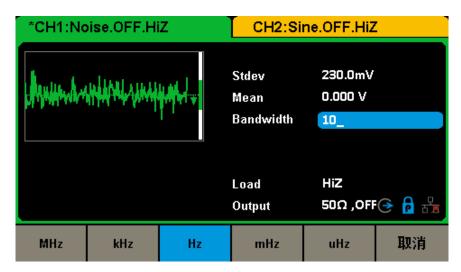


图 2-16 噪声带宽设置界面

2.1.6 设置直流

选择 Waveforms → 当前页 1/2 → DC ,触摸屏显示区中将出现直流的操作菜单,通过 对直流的偏移量参数进行设置,可输出相应直流。如图 2-17 所示。

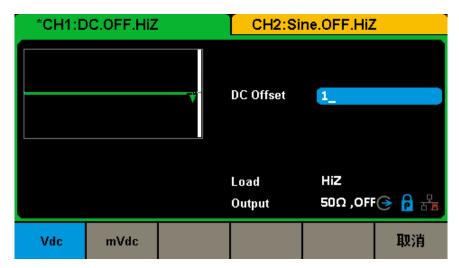


图 2-17 直流参数显示界面

备注: 直流偏移量的设置方法请参考正弦信号。

2.1.7 设置任意波

SDG2000X 可以输出仪器内建波形或用户自定义的任意波形。内建任意波形存储在仪器内部非易失性存储区。此外, SDG2000X 允许用户编辑任意波形, 波形点数可为 8 至 8M 个, 即 8pts 至 8Mpts。已编辑的波形可以存储在仪器内部或外部存储器中。

DDS 模式

选择 Waveforms \rightarrow 当前页 1/2 \rightarrow Arb ,任意波模式设为"DDS"。设置任意波的参数主要包括:频率/周期、幅值/高电平、偏移量/低电平、相位,改变相应的参数值,可以得到您想要的波形。如图 2-18 所示:

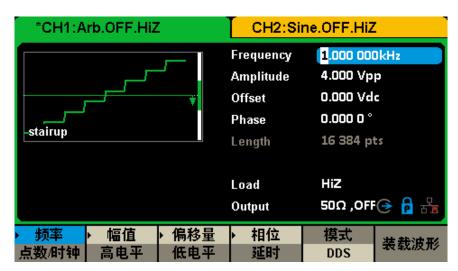


图 2-18 任意波 DDS 模式参数显示界面

功能菜单	设置说明	
频率/周期	设置波形频率/周期,按下相应的功能按键可上下切换	
幅值/高电平	设置波形幅值/高电平,按下相应的功能按键可上下切换	
偏移量/低电平	设置波形偏移量/低电平,按下相应的功能按键可上下切换	
相位	设置波形相位	
装载波形	查看已存波形或内建波形	

表 2-6 任意波操作菜单说明

DDS 输出模式下,用户可以设置任意波的输出频率或周期,仪器根据当前设置的输出频率以 DDS 的方式输出任意波形。

逐点输出模式

图 2-19 任意波逐点输出模式显示界面

逐点输出模式下,用户可以设置采样率(即每秒输出的点数)或频率,仪器根据当前设置的采样率逐点输出任意波形。

设置采样率

在逐点输出模式下选择《采样率》,可设置任意波采样率的数值。在更改参数时,如果当前的参数值对新波形是有效的,则使用当前值,否则使用该波形的限制值。

在选定所要修改的参数时,可通过数字键盘直接输入参数值,然后通过功能按键选择相应的参数单位即可,如图 2-20 所示。也可以使用方向键来改变参数值所需更改的数据位,再通过旋转旋钮可改变该位的数值。

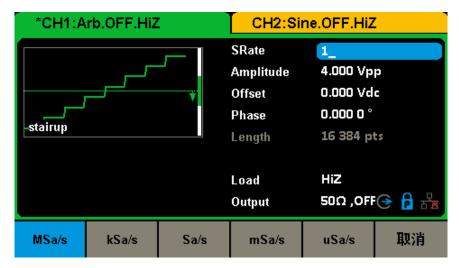


图 2-20 任意波采样率设置界面

备注:任意波其他参数的设置方法参考正弦信号。

装载波形

内建波形

SDG2000X 内部提供了 196 种任意波形。选择 Waveforms \rightarrow 当前页 1/2 \rightarrow Arb \rightarrow 装载波形 \rightarrow 内建波形 ,进入内建波形选择界面,如下图所示。

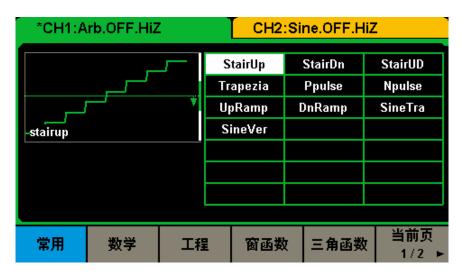


图 2-21 内建的任意波

按 常用 、 数学 、 工程 、 窗函数 和 三角函数 等菜单选择相应的类别(菜单栏中,选中的类别高亮显示),然后旋转旋钮或直接点击屏幕上相应的波形选择所需的波形(选中的波形高亮显示),再选择 确定 或按下旋钮即可调出相应的内建波形。

表 2-7 内建波形

类别	波形	说明
	StairUp	阶梯上升
	StairDn	阶梯下降
	StairUD	阶梯上升/下降
常用	Trapezia	梯形
	Ppulse	正脉冲
	Npulse	负脉冲
	UpRamp	正三角
	DnRamp	倒三角
	SineTra	Sine-Tra 波形

类别	波形	说明	
	SineVer	Sine-Ver 波形	
	ExpFall	指数下降函数	
	ExpRise	指数上升函数	
	LogFall	Log 上升函数	
	LogRise	Log 下降函数	
	Sqrt	平方根函数	
	Root3	立方根函数	
	X^2	平方函数	
	X^3	立方函数	
	Airy	Airy 函数	
	Besselj	第1类贝塞尔函数	
	Bessely	第Ⅱ类贝塞尔函数	
	Dirichlet	狄利克雷函数	
	Erf	误差函数	
*4.25	Erfc	补余误差函数	
数学	Erfclnv	反补余误差函数	
	Erflnv	反误差函数	
	Laguerre	四次拉盖尔多项式	
	Legend	五次勒让德多项式	
	Versiera	箕舌线	
	Sinc	Sinc 函数	
	Gaussian	高斯分布函数	
	Dlorentz	Dlorentz 函数	
	Haversine	半正矢函数	
	Lorentz	洛伦兹函数	
	Gauspuls	高斯正弦脉冲信号	
	Gmonopuls	高斯单脉冲信号	
	Tripuls	非周期三角波	
	Weibull	韦伯分布	

类别	波形	说明		
	LogNormal	对数正态分布		
	Laplace	拉普拉斯分布		
	Maxwell	麦克斯韦分布		
	Rayleigh	瑞利分布		
	Cauchy	柯西分布		
	Cardiac	心电信号		
	Quake	地震波		
	Chirp	线性调频信号		
	TwoTone	双音频信号		
	SNR	SNR 信号		
	AmpALT	增益振荡曲线		
	AttALT	衰减振荡曲线		
	RoundHalf	半球波		
	RoundsPM	RoundsPM		
	BlaseiWave	爆破震动"时间-振速"曲线		
	DampedOsc	阻尼振荡"时间-位移"曲线		
工程	SwingOsc	秋千振荡时间-动能曲线		
	Discharge	镍氢电池放电曲线		
	Pahcur	直流无刷电机电流波形		
	Combin	组合函数		
	SCR	SCR 烧结温发布图		
	TV	电视信号		
	Voice	语音信号		
	Surge	浪涌信号		
	Ripple	电源纹波		
	Gamma	Gamma 信号		
	StepResp	阶跃响应信号		
	BandLimited	带限信号		
	CPulse	C-Pulse 信号		

类别	波形	说明	
	CWPulse	CW 脉冲信号	
	GateVibr	闸门自激振荡信号	
	LFMPulse	线性调频脉冲信 号	
	MCNoise	机械施工噪声信号	
	Hamming	汉明窗	
	Hanning	汉宁窗	
	Kaiser	凯塞窗	
	Blackman	布莱克曼窗	
	GaussiWin	高斯窗	
	Triangle	三角窗	
	BlackmanH	BlackmanH 窗	
京 之坐。	Bartlett-Hann	Bartlett-Hann 窗	
窗函数	Bartlett	巴特利特窗	
	BarthannWin	修正的巴特利特窗	
	BohmanWin	BohmanWin 窗	
	ChebWin	切比雪夫窗	
	FlattopWin	平顶窗	
	ParzenWin	Parzen 窗	
	TaylorWin	Taylaor 窗	
	TukeyWin	Tukey 窗	
	Tan	正切函数	
	Cot	余切函数	
	Sec	正割函数	
三角函数	Csc	余割函数	
	Asin	反正弦函数	
	Acos	反余弦函数	
	Atan	反正切函数	
	ACot	反余切函数	
	CosH	双曲余弦	

类别	波形	说明
	CosInt	余弦积分
	Coth	双曲余切
	Csch	双曲余割
	SecH	双曲正割
	SinH	双曲正弦
	SinInt	正弦积分
	TanH	双曲正切
	ACosH	反双曲余弦函数
	ASecH	反双曲正割函数
	ASinH	反双曲正弦函数
	ATanH	反双曲正切函数
	ACsch	反双曲余割函数
	ACoth	反双曲余切函数
	SquareDuty01	占空比 1%方波
	SquareDuty02	占空比 2%方波
	SquareDuty04	占空比 4%方波
	SquareDuty06	占空比 6%方波
	SquareDuty08	占空比 8%方波
	SquareDuty10	占空比 10%方波
	SquareDuty12	占空比 12%方波
方波 1	SquareDuty14	占空比 14%方波
	SquareDuty16	占空比 16%方波
	SquareDuty18	占空比 18%方波
	SquareDuty20	占空比 20%方波
	SquareDuty22	占空比 22%方波
	SquareDuty24	占空比 24%方波
	SquareDuty26	占空比 26%方波
	SquareDuty28	占空比 28%方波
	SquareDuty30	占空比 30%方波

类别	波形	说明
	SquareDuty32	占空比 32%方波
	SquareDuty34	占空比 34%方波
	SquareDuty36	占空比 36%方波
	SquareDuty38	占空比 38%方波
	SquareDuty40	占空比 40%方波
	SquareDuty42	占空比 42%方波
	SquareDuty44	占空比 44%方波
	SquareDuty46	占空比 46%方波
	SquareDuty48	占空比 48%方波
	SquareDuty50	占空比 50%方波
	SquareDuty52	占空比 52%方波
	SquareDuty54	占空比 54%方波
	SquareDuty56	占空比 56%方波
	SquareDuty58	占空比 58%方波
	SquareDuty60	占空比 60%方波
	SquareDuty62	占空比 62%方波
	SquareDuty64	占空比 64%方波
	SquareDuty66	占空比 66%方波
	SquareDuty68	占空比 68%方波
	SquareDuty70	占空比 70%方波
	SquareDuty72	占空比 72%方波
	SquareDuty74	占空比 74%方波
	SquareDuty76	占空比 76%方波
方波 2	SquareDuty78	占空比 78%方波
	SquareDuty80	占空比 80%方波
	SquareDuty82	占空比 82%方波
	SquareDuty84	占空比 84%方波
	SquareDuty86	占空比 86%方波
	SquareDuty88	占空比 88%方波

类别	波形	说明	
	SquareDuty90	占空比 90%方波	
	SquareDuty92	占空比 92%方波	
	SquareDuty94	占空比 94%方波	
	SquareDuty96	占空比 96%方波	
	SquareDuty98	占空比 98%方波	
	SquareDuty99	占空比 99%方波	
	EEG	脑电图	
	EMG	肌电图	
	Pulseilogram	常人脉搏曲线	
	ResSpeed	常人呼气流速曲线	
	ECG1	心电图 1	
	ECG2	心电图 2	
	ECG3	心电图 3	
	ECG4	心电图 4	
	ECG5	心电图 5	
	ECG6	心电图 6	
医疗电子	ECG7	心电图 7	
	ECG8	心电图 8	
	ECG9	心电图 9	
	ECG10	心电图 10	
	ECG11	心电图 11	
	ECG12	心电图 12	
	ECG13	心电图 13	
	ECG14	心电图 14	
	ECG15	心电图 15	
	LFPulse	低频脉冲电疗波形	
	Tens1	神经电刺激疗法波形 1	
	Tens2	神经电刺激疗法波形 2	
	Tens3	神经电刺激疗法波形 3	

类别	波形	说明	
	AM	正弦分段调幅波	
	FM	正弦分段调频波	
调制	PFM	脉冲分段调频波	
	PM	正弦分段调相波	
	PWM	脉宽分段调频波	
	Butterworth	巴特沃斯滤波器	
滤波器	Chebyshev1	型切比雪夫滤波器	
	Chebyshev2	Ⅱ型切比雪夫滤波器	
	demo1_375pts	TureArb 演示波形 1(375 波形点)	
演示	demo1_16kpts	TureArb 演示波形 1 (16384 波形点)	
	demo2_3kpts	TureArb 演示波形 2(3000 波形点)	
	demo2_16kpts	TureArb 演示波形 2 (16384 波形点)	

已存任意波形

SDG2000X 为用户提供了非易失性存储空间,用户可以通过上位机软件 EasyWave 编辑任意波形,通过远程接口下载至仪器,或通过 U 盘读取后输出。选择 Waveforms → 当前页 1/2 → Arb → 装载波形 → 已存波形 ,进入已存波形选择界面,如图 2-22 所示。

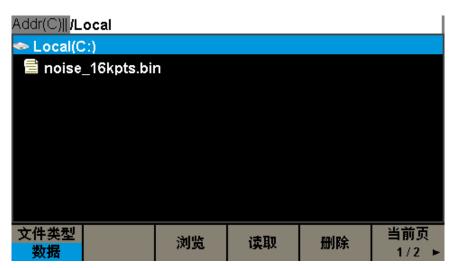


图 2-22 用户自定义的任意波

旋转旋钮或直接点击屏幕上相应的波形选择所需的波形,再选择 读取 或按下旋钮即可调出相应的任意波形。

2.2 谐波设置

SDG2000X 可作为一款谐波发生器,输出具有指定次数、幅度和相位的谐波。由傅里叶变换理论可知,周期函数的时域波形是一系列正弦波的叠加,可表示为:

$$f(t) = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2) + A_3 \sin(2\pi f_3 t + \varphi_3) + \dots$$

通常,频率为 f_1 的分量称为基波, f_1 为基波频率, A_1 为基波幅度, ϕ_1 为基波相位。此外的各分量频率为基波频率的整数倍,称为谐波。频率为基波频率的奇数倍的分量称为奇次谐波;频率为基波频率的偶数倍的分量称为偶次谐波。

按 Waveforms → Sine → 谐波 ,选择"打开",再按 谐波参数 进入谐波设置菜单,如下图所示。

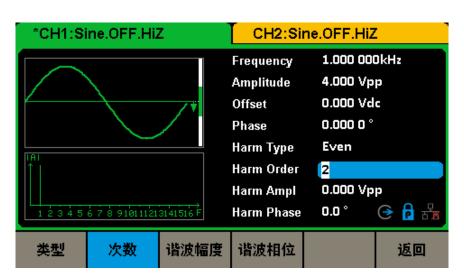


图 2-23 谐波设置界面

表 2-8 谐波操作菜单说明

功能菜单	设置说明	
类型	设置谐波的类型为偶次谐波、奇次谐波或自定义	
次数	设置谐波的次数	
谐波幅度	设置各次谐波的幅度	
谐波相位	设置各次谐波的相位	
取消	返回正弦波参数菜单	

设置谐波类型

SDG2000X 可输出偶次、奇次和用户自定义次数的谐波。进入谐波设置菜单,按 类型 软键选择所需谐波的类型。

- 1. 选择 偶次谐波 , 仪器输出基波和偶次谐波。
- 2. 选择 奇次谐波 , 仪器输出基波和奇次谐波。
- 3. 选择 自定义 ,用户可自定义输出谐波的次数。

设置谐波次数

进入谐波设置菜单,按一次数一软键,使用数字键盘或旋钮输入相应的数值。

- 谐波次数的可设置范围受仪器最大输出频率和当前基波频率的限制。
- 范围: 2至(仪器最大输出频率÷基波频率)。
- 最大次数为 10。

设置谐波幅度

进入谐波设置菜单,按 谐波幅度 软键可以设置各次谐波的幅度。

- 1. 按 谐波次数 ,选择待设置谐波的序号。
- 2. 按 谐波幅度 ,设置选择次谐波的幅度。使用方向键和旋钮改变幅度的数值。或使用数字键盘输入幅度的数值,然后在弹出的单位菜单中选择所需的单位(可选的幅度单位有 Vpp、mVpp 和 dBc)。

设置谐波相位

进入谐波设置菜单,按 谐波相位 软键可以设置各次谐波的相位。

- 1. 按 谐波次数 ,选择待设置谐波的序号。
- 2. 按 谐波相位 ,设置选择次谐波的相位。使用方向键和旋钮改变相位的数值。或使用数字 键盘输入相位的数值,然后在弹出的单位菜单中选择单位"°"。

2.3 调制/扫频/脉冲串设置

SDG2000X 提供了丰富的调制功能,包括 AM、DSB-AM、FM、PM、FSK、ASK、PSK 和 PWM,根据不同的调制类型,需要设置不同的调制参数。幅度调制时,可对调幅频率、调制深度、调制波形和信源类型进行设置;频率调制时,可对调频频率、频率偏差、调制波形和信源类型进行设置;相位调制时,可对调相频率、相位偏差、调制波形和信源类型进行设置;频移键控调制时,可对键控频率、跳频频率和信源类型进行设置;幅移键控调制时,可对键控频率、载波频率和信源类型进行设置;相移键控调制时,可对调制速率、极性和信源类型进行设置;脉宽调制时,可对调制频率、脉宽/占空比偏差、调制波形和信源类型进行设置。下面对不同的调制类型逐一进行介绍,着重说明其参数设置。

2.3.1 幅度调制 (AM)

在 AM 调制中,依据幅度调制原理,已调制波形由载波和调制波合成,载波的幅度随调制波的幅度变化而变化。

选择 $\boxed{\mathsf{Mod}} \to \boxed{\mathsf{ii}}$ 调制类型 \to $\boxed{\mathsf{AM}}$,幅度调制的参数设置说明如表 2-9 所示。

调制类型	信源选择	调制深度	调制波形	2田华市李家	
AM	内部	胸 刺 / 木 / 支	Sine	调制频率	

表 2-9 幅度调制操作菜单说明

功能菜单	设置	说明	
调制类型	AM	幅度调制	
	内部	调制信号选择为内部信号	
信源选择	外部	调制信号选择外部输入信号	
	通道	调制信号选择另一通道输出信号	
调制深度		调制幅度变化范围	
	Sine		
	Square		
	Triangle		
调制波形	UpRamp	选择调制波形形状	
	DnRamp		
	Noise		
	Arb		
调制频率		频率范围 1mHz~1MHz(只用于内部信源)	

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"、"外部"或"通道"调制源。默认为"内部"。

1. 内部调制

AM 内部调制时,选择 调制波形 ,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。

● Square: 占空比为 50%

● Triangle:对称性为 50%

● UpRamp: 对称性为 100%

● DnRamp:对称性为 0%

● Arb: 当前通道选择的任意波形

备注: Noise 可以作为调制源, 但不能作为载波。

2. 外部调制

AM 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。此时已调信号的幅度受该连接器上的信号电平控制。例如:调制深度为 100%时,在调制信号为+6V 时输出为最大幅度,在调制信号为-6V 时输出为最小幅度。

3. 通道调制

当被调制的载波在 CH1 时,可直接使用 CH2 为调制波,此时设备在内部直接用 CH2 作为调制波来调制 CH1 的载波,而不需要通过外部线缆将 CH2 的波形引入到外部接口。反之亦然。

调制深度

调制深度表示幅度变化的程度,以百分比表示。选择内部调制后,选择 调制深度 菜单使其突出显示。调制深度可从 0%-120%之间选择,通过数字键或方向键和旋钮输入所需的参数值。

- 在 0%调制时,输出幅度是设定幅值的一半。
- 当在 120%调制时,输出幅度等于设定值。
- 选择外部调制时,无此参数设置。
- 对于选择外部信源, AM 深度由仪器后面板的【Aux In/Out】连接器上的信号电平控制, 12Vpp 对应于当前所选调制深度为 100%。

调制频率

选择内部调制后,选择 调制频率 菜单使其突出显示,通过数字键或方向键和旋钮输入所需的

参数值。

- 调制频率范围为 1mHz~1MHz, 默认为 100Hz。
- 选择外部调制时,无此参数设置。

2.3.2 双边带调幅 (DSB-AM)

选择 $\boxed{\mathsf{Mod}} \to \boxed{\mathsf{ii}}$ 调制类型 \to DSB-AM ,双边带调制波形的参数设置如下表所示。

调制类型	信源选择	2田华山北西東	调制波形	
DSB-AM	内部	阿市沙火车	Sine	

表 2-10 双边带调幅操作菜单说明

功能菜单	设置	说明
调制类型	DSB-AM	双边带幅度调制
/ - \1∓ \1+ 1△	内部	调制信号选择为内部信号
信源选择	外部	调制信号选择外部输入信号
	通道	调制信号选择另一通道输出信号
调制频率		频率范围 1mHz~1MHz(只用于内部信源)
	Sine	
	Square	
	Triangle	
调制波形	UpRamp	选择调制波形形状
	DnRamp	
	Noise	
	Arb	

信源选择

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"、"外部"或"通道"调制源。默认为"内部"。

内部调制

DSB-AM 内部调制时,选择 调制波形 ,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。

● Square: 占空比为 50%

● Triangle: 对称性为 50%

● UpRamp: 对称性为 100%

● DnRamp:对称性为 0%

● Arb: 当前通道选择的任意波形

备注: Noise 可以作为调制源,但不能作为载波。

外部调制

DSB-AM 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。 此时已调信号的幅度受该连接器上的信号电平控制。

通道调制

当被调制的载波在 CH1 时,可直接使用 CH2 为调制波,此时设备在内部直接用 CH2 作为调制波来调制 CH1 的载波,而不需要通过外部线缆将 CH2 的波形引入到外部接口。反之亦然。

调制频率

选择内部调制后,选择 调制频率 菜单使其突出显示,通过数字键或方向键和旋钮输入所需的参数值。

- 调制频率范围为 1mHz~1MHz ,默认为 100Hz。
- 选择外部调制时,无此参数设置。

2.3.3 频率调制 (FM)

在 FM 调制中,依据频率调制原理,已调制波由载波和调制波合成,载波的频率随调制波的幅度变化而变化。

选择 $Mod \rightarrow B$ 调制类型 $A \rightarrow B$ 所率调制波形的参数设置说明如表 2-11 频率调制操作菜单说明

调制类型	信源选择	糖來伯羊	调制波形	调制频率	
FM	内部	妙学 惘左	Sine	胸刺类等	

表 2-11 频率调制操作菜单说明

功能菜单	设置	说明
调制类型	FM	频率调制
	内部	调制信号选择为内部信号
信源选择	外部	调制信号选择外部输入信号
	通道	调制信号选择另一通道输出信号
频率偏差		设置调制波形的频率相对于载波频率的最大偏差
	Sine	
	Square	
	Triangle	
调制波形	UpRamp	选择调制波形形状
	DnRamp	
	Noise	
	Arb	
调制频率		频率范围 1mHz~1MHz(只用于内部信源)

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"、"外部"或"通道"调制源。默认为"内部"。

内部调制

FM 内部调制时,选择 调制波形 ,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。

● Square:占空比为 50%

● Triangle: 对称性为 50%

● UpRamp:对称性为 100%

● DnRamp: 对称性为 0%

● Arb: 当前通道选择的任意波形

备注: Noise 可以作为调制源,但不能作为载波。

外部调制

FM 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。此时已调信号的频率受该连接器上的信号电平控制。例如:频率偏差为 1kHz 时,在调制信号为+6V 时对应于频率增加 1kHz,在调制信号为-6V 时对应于频率减小 1kHz。

通道调制

当被调制的载波在 CH1 时,可直接使用 CH2 为调制波,此时设备在内部直接用 CH2 作为调制波来调制 CH1 的载波,而不需要通过外部线缆将 CH2 的波形引入到外部接口。反之亦然。

频率偏差

频率偏差,指调制波形的频率相对于载波频率的偏差。选择 频率偏差 使其突出显示后,通过数字键或方向键和旋钮输入所需的参数值。

- 频率偏差的偏移量必须小干或等干载波频率:
- 偏移量和载波频率的和必须小于或等于当前载波频率的上限。

调制频率

选择内部调制后,选择 调制频率 菜单使其突出显示,通过数字键或方向键和旋钮输入所需的参数值。

- 调制频率范围为 1mHz~1MHz. 默认为 100Hz。
- 选择外部调制时,无此参数设置。

2.3.4 相位调制 (PM)

在 PM 调制中,依据相位调制原理,已调制波由载波和调制波合成,载波的相位随调制波形的幅度变化而变化。

选择 Mod \rightarrow 调制类型 \rightarrow PM ,相位调制波的参数设置说明如表 2-12 相位调制操作菜单说明所示。

 调制类型 信源选择 PM
 内部
 相位偏差 Sine
 调制波形 调制频率

表 2-12 相位调制操作菜单说明

功能菜单	设置	说明	
调制类型	PM	相位调制	
A STALLE	内部	调制信号选择为内部信号	
信源选择	外部	调制信号选择外部输入信号	
	通道	调制信号选择另一通道输出信号	
相位偏差		设置相位偏移,可设定值为: 0°~360°	
	Sine		
	Square		
	Triangle		
调制波形	UpRamp	选择调制波形形状	
	DnRamp		
	Noise		
	Arb		
调制频率		频率范围 1mHz~1MHz(只用于内部信源)	

SDG2000X 支持内部和外部调制源的调制波形。选择 \mod \rightarrow 信源选择 ,设置"内部"、"外部"或"通道"调制源。默认为"内部"。

内部调制

PM 内部调制时,选择 调制波形 ,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。

● Square:占空比为 50%

● Triangle: 对称性为 50%

● UpRamp: 对称性为 100%

● DnRamp:对称性为 0%

● Arb: 当前通道选择的任意波形

备注: Noise 可以作为调制源, 但不能作为载波。

外部调制

PM 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。此时已调信号的相位受该连接器上的信号电平控制。例如:相位偏差为 180°时,在调制信号为+6V 时对应于相位增加 180°,在调制信号为-6V 时对应于相位减小 180°。

相位偏差

相位偏差,指调制波形的相位相对于载波相位的偏差。选择相位偏差使其突出显示后,可设置 PM 调制的相位偏差。

- 通过数字键或方向键和旋钮输入所需的参数值。
- 相位偏差的设置范围为 0°~360°, 默认值为 100°。

调制频率

选择内部调制后,选择 调制频率 菜单使其突出显示,通过数字键或方向键和旋钮输入所需的 参数值。

- 调制频率范围为 1mHz~1MHz , 默认为 100Hz。
- 选择外部调制时,无此参数设置。

2.3.5 频移键控(FSK)

在 FSK 调制中,存在载波频率和跳跃频率,其输出频率在载波频率和跳跃频率值间切换,FSK 输出频率是由内部频率发生器或仪器后面板的【Aux In/Out】连接器上的信号电平所决定的。

选择 $Mod \rightarrow BH$ 调制类型 $\rightarrow FSK \rightarrow BH$,频移键控波形的参数设置说明如表 2-13 频移键控操作菜单说明所示。

调制类型	信源选择	鍵控牆率	跳牆牆塞	
FSK	内部	経ゴエッツギ	政化步火步火车	

表 2-13 频移键控操作菜单说明

功能菜单	设置	说明
调制类型	FSK	频移键控
信源选择	内部	调制信号选择为内部信号
	外部	调制信号选择外部输入信号
键控频率		设置输出频率的切换频率,范围为:1mHz~1MHz (只用于内部信源)
跳频频率		设置跳跃频率

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"或"外部"调制源。默认为"内部"。

内部调制

FSK 内部调制时,调制波形为占空比为 50%的方波。

外部调制

FSK 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。外调制信号必须为符合 CMOS 电平规范的方波。

键控频率

选择 FSK 内部调制后,选择键控频率菜单使其突出显示,可设置输出频率在载波频率和跳频频率 之间切换的速率。

- 通过数字键或方向键和旋钮输入所需的参数值。
- 键控频率范围为 1mHz~1MHz。
- 选择外部调制时,无此参数设置。

跳频频率

跳频频率即跳跃频率, 范围取决于当前所选的载波波形。选择 <mark>跳频频率</mark> 菜单使其突出显示后, 通过数字键或旋钮输入所需的参数值。

● 正弦波: 1uHz~120MHz

● 方 波: 1uHz~25MHz

● 三角波: 1uHz~1MHz

● 任意波: 1uHz~20MHz

2.3.6 幅移键控(ASK)

幅移键控 ASK 中,需要设定键控频率和载波频率,其中键控频率就是已调制波形幅度跳变的频率。

选择 Mod → 调制类型 → ASK , 幅移键控波形的参数设置说明如表 2-14 所示:

调制类型 信源选择 <mark>键控频率</mark> ASK 内部

表 2	2-14	幅移键控操作菜单说明
-----	------	------------

功能菜单	设置	说明
调制类型	ASK	幅移键控
信源选择	内部	调制信号选择为内部信号
	外部	调制信号选择外部输入信号
键控频率		设置输出幅度在载波幅度和 0 之间交替的频率,范围为:1mHz~1MHz(只用于内部信源)

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"或"外部"调制源。默认为"内部"。

内部调制

ASK 内部调制时,调制波形为占空比为 50%的方波。

外部调制

ASK 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。外调制信号必须为符合 CMOS 电平规范的方波。

键控频率

选择 ASK 内部调制后,选择 键控频率 菜单使其突出显示,可设置输出幅度在载波幅度和 0 之间切换的频率。

- 通过数字键或方向键和旋钮输入所需的参数值。
- 键控频率范围为 1mHz~1MHz, 默认为 100Hz。
- 选择外部调制时,无此参数设置。

2.3.7 相移键控(PSK)

相移键控 PSK 中,键控频率就是已调制波形相位跳变的频率,调制相位默认为 180°。

选择 Mod \rightarrow 调制类型 \rightarrow 当前页 1/2 \rightarrow PSK \rightarrow 相移键控波形的参数设置说明如表 2-15 示:

调制类型	信源选择	2田华心市家	极性	
PSK	内部	阿彻还举	反向	

表 2-15 相移键控操作菜单说明

功能菜单	设置	说明
调制类型	PSK	相移键控
信源选择	内部	调制信号选择为内部信号
	外部	调制信号选择外部输入信号
键控频率		设置输出相位跳变的频率,范围为:1mHz~1MHz (只用于内部信源)
极性	反向	设置调制极性为负
似江	正相	设置调制极性为正

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"或"外部"调制源。默认为"内部"。

内部调制

PSK 内部调制时,调制波形为占空比为 50%的方波。

外部调制

PSK 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。外调制信号必须为符合 CMOS 电平规范的方波。

调制速率

选择 PSK 内部调制后,选择 调制速率 菜单使其突出显示,可设置输出相位跳变的频率。

- 通过数字键或方向键和旋钮输入所需的参数值。
- 调制速率范围为 1mHz~1MHz, 默认为 100Hz。
- 选择外部调制时,无此参数设置。

极性

选择 极性 ,选择由调制波的"正相"或"反向"极性控制相位输出。

- 内部调制时,若设定的极性为"正相",则在调制波幅度为逻辑低电平时输出载波相位;在调制 波幅度为逻辑高电平时输出调制相位。极性为"反向"时,情况相反。
- 外部调制时,若设定的极性为"正相",则在外部输入信号为逻辑低电平时输出载波相位;在外部输入信号为逻辑高电平时输出调制相位。极性为"反向"时,情况相反。

2.3.8 脉宽调制 (PWM)

脉冲宽度调制(PWM),载波的脉宽随调制波的幅度变化而变化。只可用于调制脉冲波。

选择 Waveforms → Pulse → Mod , 脉宽调制的参数设置说明如表 2-16 所示。

调制类型	信源选择	吃安伯羊	调制波形	调制频率	
PWM	内部	炒见惘左	Sine	阿市沙火车	

表 2-16 PWM 调制操作菜单说明

功能菜单	设置	说明
调制类型	PWM	脉宽调制
	内部	调制波选择为内部信号
信源选择	外部	调制波选择为外部输入信号
	通道	调制信号选择另一通道输出信号
脉宽偏差		设置调制载波的脉宽偏差
占空比偏差		设置调制载波的占空比偏差
	Sine	
	Square	
	Triangle	
调制波形	UpRamp	选择调制波形形状
	DnRamp	
	Noise	
	Arb	
调制频率		频率范围 1mHz~1MHz(只用于内部信源)

信源选择

SDG2000X 支持内部和外部调制源的调制波形。选择 Mod → 信源选择 ,设置"内部"、"外

部"或"通道"调制源。默认为"内部"。

内部调制

PWM 内部调制时,选择 调制波形 ,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。

● Square: 占空比为 50%

● Triangle: 对称性为 50%

● UpRamp: 对称性为 100%

● DnRamp:对称性为 0%

● Arb: 当前通道选择的任意波形

备注: Noise 可以作为调制源, 但不能作为载波。

外部调制

PWM 外部调制时,信号发生器接收仪器后面板的【Aux In/Out】连接器输入的外调制信号。此时已调信号的脉宽或占空比受该连接器上的电平控制。例如:脉宽偏差为 10s 时,在调制信号为+6V 信号电平时宽度增加 10s。

通道调制

当被调制的载波在 CH1 时,可直接使用 CH2 为调制波,此时设备在内部直接用 CH2 作为调制波来调制 CH1 的载波,而不需要通过外部线缆将 CH2 的波形引入到外部接口。反之亦然。

调制频率

选择内部调制后,选择 调制频率 菜单使其突出显示,通过数字键或方向键和旋钮输入所需的 参数值。

- 调制频率范围为 1mHz~1MHz, 默认为 100Hz。
- 选择外部调制时,无此参数设置。

脉宽偏差/占空比偏差

脉宽偏差表示已调波形相对于原始波形的脉冲宽度的变化。选择 脉宽偏差 ,使用数字键盘或方向键和旋钮输入所需的参数值。如下图所示:

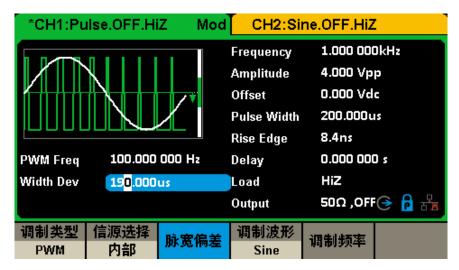


图 2-24 设置 PWM 脉宽偏差

- 脉宽偏差不能超过当前的脉冲宽度。
- 脉宽偏差受到最小脉冲宽度和当前边沿时间设置的限制。

占空比偏差表示已调波形相对于原始波形的占空比的变化(以%表示)。选择 占空比偏差 ,使用数字键盘或方向键和旋钮输入所需的参数值。如下图所示:

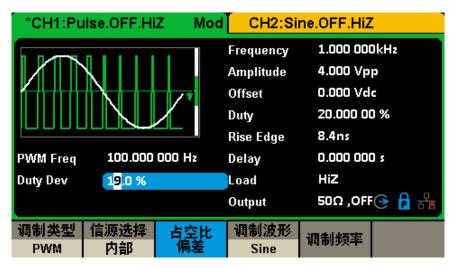


图 2-25 设置 PWM 占空比偏差

- 占空比偏差不能超过当前的脉冲的占空比。
- 占空比偏差受到最小占空比和当前边沿时间设置的限制。
- 占空比偏差和脉宽偏差是关联的,当其中一个改变时,另一个也随之改变。

2.3.9 扫频

在扫频模式下,信号频率在指定的扫描时间内从起始频率到终止频率变化输出。可适用正弦波、 方波、三角波和任意波(不允许扫描脉冲、噪声和 DC)。

选择 Sweep ,便可进入扫频模式操作菜单,如表 2-17 和表 2-18 所示:

扫描时间	起始频率	终止频率	触发源	触发输出	当前页
7月7月中7月9	中心频率	频率范围	内部	打开	1/2 ▶

表 2-17 扫频操作菜单说明(当前页 1/2)

功能菜单	设定	说明
扫描时间		设定从起始频率到终止频率所需时间
起始频率	设定扫频的起始频率	
中心频率		设定扫频的中心频率
终止频率		设定扫频的终止频率
频率范围		设定扫频的频率范围
	内部	触发源选择为内部信号
触发源	外部	触发源选择外部输入信号
	手动	手动触发扫频
触发输出	打开	打开触发输出
版 次	关闭	关闭触发输出
当前页 1/2		进入下一页

日描类型 扫描方	向	空闲频率
线性 向上		起始频率

表 2-18 扫频操作菜单说明(当前页 2/2)

功能菜单	设定	说明	
扫描类型	线性	设置扫频期间输出频率呈线性变化	
	对数	设置扫频期间输出频率呈对数变化	

扫描方向	向上	频率由低到高变化
	向下	频率由高到低变化
空闲频率	起始频率	输出扫描结束后频率停留在起始频率
	终止频率	输出扫描结束后频率停留在终止频率
	起始点	输出扫描结束后输出停留在起始点
当前页 2/2		返回上一页

扫描频率

扫描频率的设置,关键在于设置频率边界。频率边界可使用起始频率和终止频率或使用中心频率 和频率范围两种方式来设定。

起始频率和终止频率

起始频率和终止频率分别是频率扫描的下限和上限。起始频率≤终止频率。

选择 扫描方向 → 向上 ,信号发生器从起始频率向终止频率扫描;

选择 扫描方向 → 向下 ,信号发生器从终止频率向起始频率扫描。

中心频率和频率范围

中心频率 = (|起始频率+终止频率|) /2

频率范围 = 终止频率-起始频率

扫描类型

SDG2000X 提供线性和对数两种扫频类型, 默认为线性扫频。

线性扫频

在线性扫频方式下,仪器输出信号的频率以线性方式变化,即以每秒若干赫兹的方式改变输出频率。选择 Sweep → 当前页 1/2 → 扫描类型 → 线性 , 在仪器屏幕的波形示意图上,可以看到一条直线,表明输出频率以线性方式变化。如下图所示:

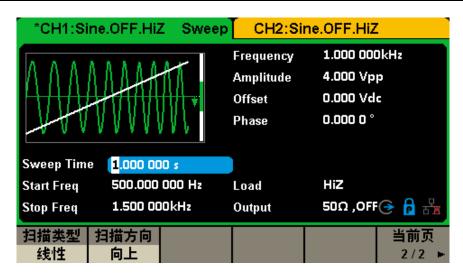


图 2-26 Sweep 线性扫频

对数扫频

在对数扫频方式下,仪器输出信号的频率以对数方式变化,即以十倍频程的方式改变输出频率。 选择 Sweep → 当前页 1/2 → 扫描类型 → 对数 , 在仪器屏幕的波形示意图上,可以看到一条指数函数的曲线,表明输出频率以对数方式变化。如下图所示:

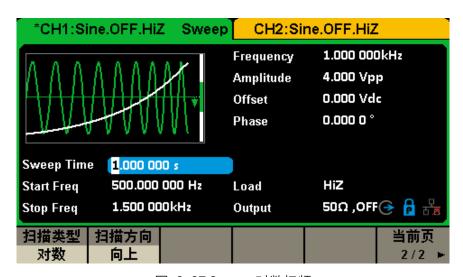


图 2-27 Sweep 对数扫频

触发源

扫频的触发源可以是内部源、外部源和手动。信号发生器在接收到一个触发信号时,产生一次扫描输出,然后等待下一个触发信号。

内部触发

选择 触发源 → 内部 。内部触发时,信号发生器输出连续的扫频波形。选择 触发输出 →

打开 ,仪器后面板的【Aux In/Out】连接器输出触发信号。默认为"内部触发"。

外部触发

选择 触发源 → 外部 。外部触发时,信号发生器接收从仪器后面板的【Aux In/Out】连接器输入的触发信号,每次接收到一个具有指定极性的 CMOS 脉冲时,就启动一次扫频。选择 边沿 ,然后选择"向下"或"向上",指定 CMOS 脉冲的极性。

手动触发

选择 触发源 → 手动 。手动触发时,每选择一次 触发 ,立即在相应通道启动一次扫频。

2.3.10 脉冲串

SDG2000X 提供多种波形的函数脉冲串输出,可持续输出特定数目的波形循环(N 循环脉冲串)或应用门信号(门控脉冲串),可使用任意波形函数,但是噪声只能用于门控脉冲串。

脉冲串类型

SDG2000X 可输出 N 循环、无限和门控三种类型的脉冲串, 默认类型为 N 循环。

类型	触发源	载波类型
N循环	内部/外部/手动	正弦波、方波、三角波、脉冲波和任意波
无限	外部/手动	正弦波、方波、三角波、脉冲波和任意波
门控	内部/外部	正弦波、方波、三角波、脉冲波、噪声和任意波

表 2-19 脉冲串类型、触发源和波形的关系

N循环脉冲串

N 循环脉冲串模式下,信号发生器在接收到触发信号时,输出具有特定循环数目的波形。支持 N 循环脉冲串的波形函数有正弦波、方波、三角波、脉冲波和任意波。

选择 Burst \rightarrow N循环 \rightarrow 循环数 ,用数字键盘或方向键和旋钮可改变循环次数。通过使用脉冲串操作菜单,可对输出的脉冲串进行设置,如表 2-20 和表 2-21 所示。

N循环	循环数	起始相位	始相位 Burst周期	触发源	当前页
门控	无限	NEXULATIVE	Duisyaj ay j	内部	1/2 ►

耒	2-20 N 循环脉冲串操作菜单说图	旧(当前页	1/2)
1		7) \ <u></u>	1/2/

功能菜单	设定	说明
N循环		设定N循环方式脉冲串
循环数		设定每个N循环脉冲串的循环数目
无限循环		N 循环脉冲串的循环个数为无限个
起始相位		设定脉冲串的起始相位
Burst 周期		设定脉冲串的周期,仅在触发源为内部和手动时显示
	内部	触发源选择为内部信号
触发源	外部	触发源选择外部输入信号
	手动	触发源为手动触发
当前页 1/2		进入下一页

触发延识	触发输出	触发	Burst	当前页
用氧化文文	关闭	用集改	Counter	2/2 ▶

表 2-21 N循环脉冲串操作菜单说明(当前页 2/2)

功能菜单	设定	说明
延迟	设置N循环脉冲串开始的延迟时间	
触发输出	打开	打开触发输出
	关闭	关闭触发输出
Burst Counter		设置 N 循环下触发源为外部、手动时输出的 burst 周期数的个数
当前页 2/2		返回上一页

无限脉冲串

无限脉冲串相当于将波形循环次数设为无限大,信号发生器在接收到触发信号时,输出连续的波 形。支持无限脉冲串的波形函数有正弦波、方波、三角波、脉冲波和任意波。

选择 Burst \rightarrow N 循环 \rightarrow 无限 ,仪器自动将触发源设置为"外部"或"手动"。屏幕显示一个无限循环的脉冲串示意图,如下图所示:

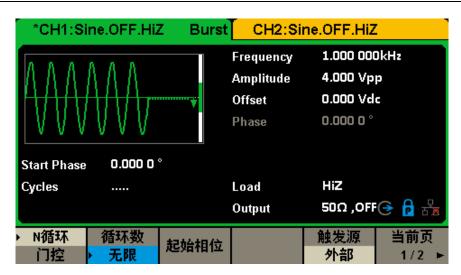


图 2-28 无限脉冲串

门控脉冲串

门控脉冲串模式下,信号发生器根据门控信号电平控制波形输出,即在门控信号为"真"时,输出一个连续波形;在门控信号为"假"时,首先完成当前的波形周期,然后停止。支持门控脉冲串的波形函数有正弦波、方波、三角波、脉冲波、噪声和任意波(直流除外)。

选择 Burst → 门控 ,即可进入门控脉冲串操作界面。通过使用脉冲串操作菜单,可对输出的脉冲串进行设置,如表 2-22 所示。

ı	N循环	极性	起始相位	Burst周期	触发源	当前页
,	门控	负			外部	1/2 ▶

表 2-22 门控脉冲串操作菜单说明(当前页 1/2)

功能菜单	设定	说明
门控		设定门控方式脉冲串
起始相位		设定脉冲串的起始相位
Burst 周期		设定脉冲串的周期
极性	正	脉冲串在门控信号为"正"时才有波形输出
1)汉 工	负	脉冲串在门控信号为"负"时才有波形输出
源	内部	门控源选择为内部信号
<i> </i>	外部	门控源选择外部输入信号

Burst 周期

Burst 周期仅适用于内部和手动触发,定义为从一个脉冲串开始到下一个脉冲串开始的时间。选择Burst 周期 ,使用数字键盘或方向键和旋钮输入所需的周期。默认为 10ms。N 循环脉冲串模式下Burst 周期的设置说明如下:

- Burst 周期 ≥ 0.99μs+波形周期 x 循环数。此处波形周期为脉冲串函数(正弦波、方波等)的周期。
- 如果设置的 Burst 周期过小、仪器将自动增加该周期以允许指定数量的循环输出。

触发源

脉冲串的触发源可以是内部源、外部源和手动源。信号发生器在接收到一个触发信号时,产生一次脉冲串输出,然后等待下一个触发信号。默认为"内部触发"。

内部触发

选择 触发源 → 内部 。内部触发时,信号发生器输出连续的脉冲串波形。选择 触发输出 为"向上"、"向下"或"关闭",仪器后面板的【Aux In/Out】连接器输出具有指定边沿的触发信号或不输出触发信号。

外部触发

选择 触发源 → 外部 。外部触发时,信号发生器接收从仪器后面板的【Aux In/Out】连接器输入的触发信号,每次接收到一个具有指定极性的 CMOS 脉冲时,就输出一次脉冲串。选择 边沿 ,然后选择"向下"或"向上",指定 CMOS 脉冲的极性。

手动触发

选择 <u>触发源</u> → <u>手动</u>。手动触发时,每选择一次 <u>触发</u>,立即在相应通道启动一次脉冲 串输出。

2.4 存储与调用

选择 Store/Recall ,启用存储和调用功能,相应的按键灯变亮,进入存储与调用操作界面,如图 2-29 所示。

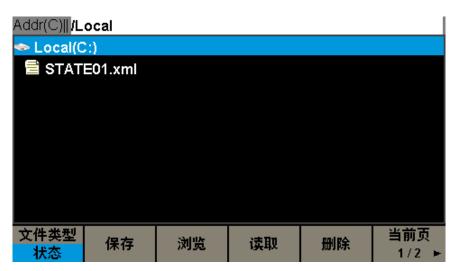


图 2-29 存储与调用界面(当前页 1/2)

表 2-23 存储与调用操作菜单说明(当前页 1/2)

功能菜单	设定	说明
文件类型	状态	状态文件
人门大王	数据	波形数据文件
保存 保存状态文件		保存状态文件
浏览 浏览当前选中		浏览当前选中文件夹下的目录
读取 读取存储区指定位置的		读取存储区指定位置的状态和数据文件
删除		删除选中的状态或数据文件
当前页		进入下一页
1/2		

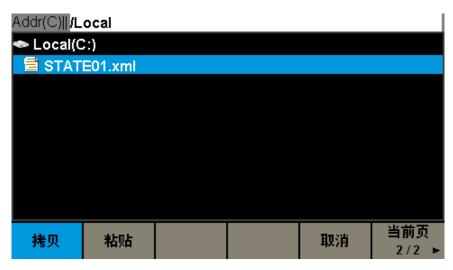


图 2-30 存储与调用界面(当前页 2/2)

 功能菜单
 说明

 拷贝
 拷贝选中的文件

 粘贴
 粘贴选中的文件

 取消
 退出文件管理界面

 当前页 2/2
 返回上一页

表 2-24 存储与调用操作菜单说明(当前页 2/2)

2.4.1 存储系统

SDG2000X 支持将仪器当前的状态存储到内部或外部存储器,并支持用户在需要时调用。用户可以通过任意波编辑软件 EasyWave 下载任意波文件至内部存储器,或从 U 盘中读取任意波文件并保存至内部存储器。SDG2000X 提供一个内部非易失性存储器和一个外部存储器接口。

Local(C:)

SDG2000X 提供内部非易失性存储器,用户可以保存仪器状态和任意波文件至 C 盘。

USB Device(0:)

SDG2000X 标配有 USB Host, 位于仪器前面板的左侧, 支持 U 盘存储和固件升级。在移动介质如 U 盘插入 USB Host 接口时, 文件管理界面会出现"USB Device (0:)"盘符, 并提示"USB 设备已连接.", 如图 2-31 所示。当 U 盘从 USB Host 接口中拔下时, 系统会提示"USB 设备已断开.", 相应的盘符消失。

图 2-31 插入 U 盘后的文件管理界面

注意:

SDG2000X 只能识别文件名为英文字符、数字和下划线的文件,如果您使用其他特殊字符来命名文件或文件夹,在文件管理界面中可能无法正常显示。

浏览

- 可使用旋钮在 Local (C:) 和 USB Device (0:) 间切换,或直接点屏幕上相应的位置进行选择,选择 浏览 、按下旋钮或点击选中的文件夹即可展开当前存储器的目录。
- 使用旋钮可以在当前目录下切换文件或文件夹。选择 浏览 、按下按旋钮或点击选中的文件夹即可展开当前目录的子目录,在子目录中选中 <up> 并选择 浏览 或按下旋钮即可返回至上一级目录。

2.4.2 文件类型

选择 Store/Recall → 文件类型 ,选择所需的文件类型。可选的文件类型包括:状态文件和数据文件。

状态文件

将仪器的工作状态以*.xml 格式存储在内部存储器中。存储的状态文件包含:两通道选定的波形参数、使用的调制、扫频、脉冲串参数和 Utility 菜单下的辅助功能参数和系统参数等。

数据文件

SDG2000X 支持读取外部存储器中*.csv 和*.dat 格式的数据文件,将其转换成*.bin 格式存储在内部存储器中,读取完成后仪器自动进入任意波功能界面。

用户也可以通过上位机软件 EasyWaveX 编辑任意波形,通过远程接口下载至仪器,以*.bin 格式存储在内部存储器中。

2.4.3 文件操作

保存

用户可以将仪器状态存储至仪器内部的非易失性存储器和外部存储器中,方便下次调出。存储仪器状态的具体操作如下:

- 1. 选择所需的存储文件类型
 - 选择 Store/Recall → 文件类型 ,选择文件存储类型为状态文件。
- 2. 选择存储文件位置

使用旋钮或直接点击触摸屏上对应的位置选择您要存储的位置。

3. 保存该文件

选择 保存 , 系统进入文件名输入界面, 如图 2-32 所示:

图 2-32 SDG2000X 文件名输入界面

表 2-25 文件保存操作菜单说明

功能菜单	说明	
向上	向上移动字符	
向下	向下移动字符	
选择	输入当前选择的字符	
删除	删除当前选择的字符	

保存	保存文件名称
取消	返回 Store/Recall 主菜单

文件名输入

SDG2000X 可对文件进行英文命名。

字符的选定

用户可以通过旋钮、菜单软键 向上 和 向下 在虚拟键盘中选择所需的字符,或直接点击屏幕上字符所在位置,然后按 选择 菜单项进行确认,选中的字符将显示在文件名输入区。

删除字符

若要删除文件名中任意一个字符时,可先通过左右方向键来移动文件名中光标的位置,然后在操作菜单中选择一删除一,便可删除相应字符。更改光标的位置,可删除任意位置的字符。

保存文件

在文件名输入界面完成文件名输入后,选择 保存 ,信号发生器将以指定的文件名和文件类型将文件保存到当前选中的目录下。

读取

用户可以调出仪器状态或者用户编辑的任意波形数据。具体操作如下:

- 1. 选择所需的读取文件类型
 - 选择 $| Store/Recal | \rightarrow$ 文件类型 ,选择文件读取类型为状态或数据文件。
- 2. 选择读取的状态/数据文件

使用旋钮选择需要读取的文件所在的目录,选择浏览或按下旋钮展开当前目录。再使用旋钮或直接点击触摸屏上对应的位置选择您要读取的文件。

3. 读取该文件

选择。读取、或向下按旋钮或者直接在屏幕上点击该文件,都可调出相应的文件,并在读取成功后给出相应的提示消息。

删除

用户可以删除内部存储器和外部存储器中的状态文件和数据文件。具体操作如下:

1. 选择需要删除的文件

使用旋钮或直接点击触摸屏上对应的位置选择您要删除的文件。

2. 删除该文件

选择 删除 ,弹出提示框"确定删除该文件?"选择 确定 ,即可删除当前选中的文件。

拷贝、粘贴

SDG2000X 支持内、外部存储器中的文件互相拷贝。例如,将 U 盘中的任意波文件拷贝至仪器内部,具体操作如下:

1. 选择文件类型为数据

选择 Store/Recall → 文件类型 ,选择文件读取类型为数据文件。

2. 选择需要复制的文件

旋转旋钮选中 USB Device (0:), 按 浏览 或按下旋钮展开 U 盘目录, 旋钮选中您要复制的 文件, 按 当前页 1/2 → 拷贝 。

3. 粘贴该文件

旋转旋钮选中 Local(C:),按划览 或按下旋钮展开内部存储器目录,选择 粘贴 即可。

2.5 辅助功能设置

SDG2000X 的辅助功能(Utility)可对同步信号输出、通道复制、系统设置、检测/校准和频率计等功能进行选择设置,辅助功能操作菜单说明如表 2-26、表 2-27 和表 2-28 所示。

 System
 检测/校准
 频率计
 输出设置
 通道复制
 当前页

 1/3 ▶

表 2-26 辅助功能操作菜单说明(当前页 1/3)

功能菜单	说明
System	进行系统设置
检测/校准	设置检测/校准
频率计	选择频率计功能
输出设置	设置通道 1 和通道 2 的输出参数
通道复制耦合	设置跟踪、耦合和通道复制功能
当前页 1/3	进入下一页

接口设置	同步	时钟	相位模式	讨压保护	当前页
汉中以且	1-3.52	~,,,T	14121724	X2/41/KI/	2/3 ►

表 2-27 辅助功能操作菜单说明(当前页 2/3)

功能菜单	说明
接口设置	设置仪器远程通信接口的参数
同步	输出同步信号
时钟源	选择内部或外部时钟源
模式	选择相位锁定或独立通道模式
过压保护	打开或关闭过压保护功能
当前页 2/3	进入下一页

表 2-28 辅助功能操作菜单说明(当前页 3/3)

功能菜单	说明	
多设备同步	设置仪器远程通信接口的参数	
当前页 3/3	返回上一页	

2.5.1 系统设置

选择 Utility → System , 进入系统设置操作界面, 如图 2-33 和图 2-34 所示:

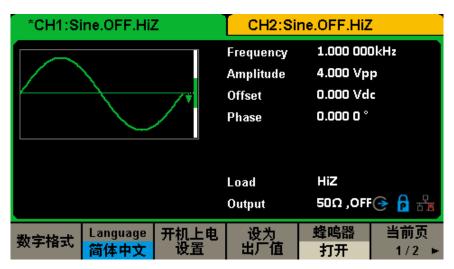


图 2-33 系统设置操作界面(当前页 1/2)

表 2-29 系统设置操作菜单说明(当前页 1/2)

功能菜单	设定	说明
数字格式		设置参数显示的数字格式
Language		设置操作菜单的语言种类
	上次	上电时恢复仪器上次关机时的所有设置
开机上电	默认	上电时恢复为出厂设置
	自定义	上电时加载用户指定的配置文件内的配置
设为出厂值		选择仪器的状态配置为出厂设置
蜂鸣器	打开	打开蜂鸣器
	关闭	关闭蜂鸣器

当前页 1/2	进入下一页
------------	-------

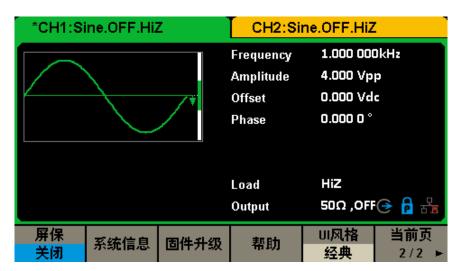


图 2-34 系统设置操作界面 (当前页 2/2)

表 2-30 系统设置操作菜单说明(当前页 2/2)

功能菜单	设定	说明	
	1 分钟		
	5 分钟		
	15 分钟		
屏保	30 分钟	打开屏保,无任意操作时,经过设定的时间仪器进入 屏保状态,按任意键恢复	
拼体 	1 小时	MINION, IXIZIMENQ	
	2 小时		
	5 小时		
	关闭	关闭屏保功能	
系统信息		查看系统信息	
固件升级		通过 U 盘升级软件版本	
帮助		查看帮助信息	
UI 风格	经典	如图 2-35	
	一般	如图 2-36	
当前页 2/2		返回上一页	

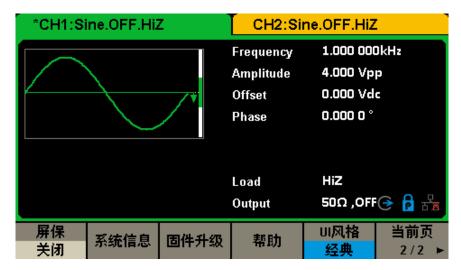


图 2-35 经典 UI 风格

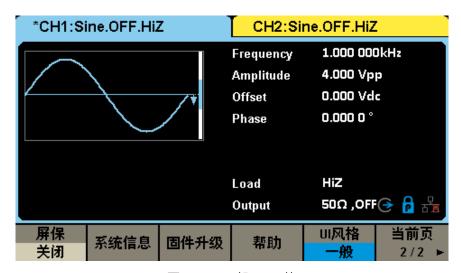


图 2-36 一般 UI 风格

数字格式

用户可以设置数字参数中的小数点和千分分隔符在屏幕中的显示格式,该设置保存在非易失性存储器中。选择 Utility → System → 数字格式 ,进入数字显示格式设置界面,如下图所示:

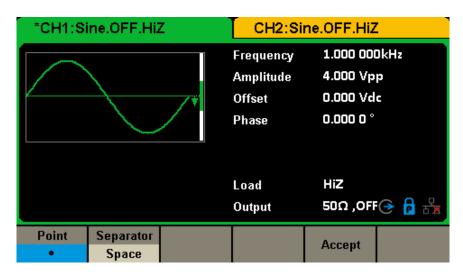


图 2-37 数字格式操作界面

功能菜单	设定	说明
小数点	,	用逗号代表小数点
		用点代表小数点
分隔符	打开	打开数字显示的分隔符
	空格	用空格表示数字显示间的分隔符
	关闭	关闭显示的分隔符
确定		完成当前操作并返回上一级菜单

表 2-31 数字格式操作菜单界面

语言设置

SDG2000X 提供中英文界面,可通过 Utility → 系统设置 → Language , 选择所需的语言类型。该设置保存在非易失性存储器中,不受"设为出厂设置"的影响。

中文显示界面如下:

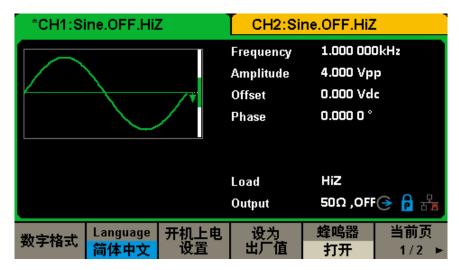


图 2-38 中文显示界面

英文显示界面如下:

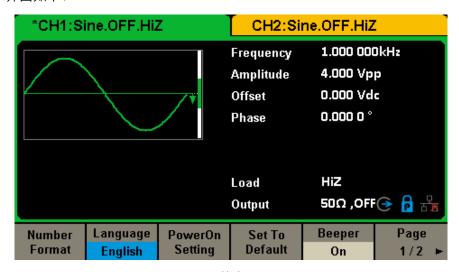


图 2-39 英文显示界面

开机上电

选择 \bigcup Utility \bigcup → System → 开机上电 ,选择通电时将要使用的仪器配置为"默认设置"、"上次设置"或"自定义设置"。默认为"默认设置"。该设置保存在非易失性存储器中,不受"设为出厂设置"的影响。

- 上次设置:包括所有的系统参数和状态,除了通道输出开关状态。
- 默认设置:出厂默认设置。个别参数(如:语言)除外。
- 自定义设置:上电时加载用户指定的配置文件内的配置

备注: 若开机上电提前设置为"上次",在修改配置后需要等待一段时间(大概 40 秒左右)重启才会生效;若是修改完配置再设置到"上次",立即重启机器配置生效。

设为出厂值

选择 Utility → System → 设为出厂值 ,可将系统恢复到出厂默认状态,仪器切换到 CH1 正弦波显示界面, Utility 和其他按键灯变暗, Parameter 按键灯变亮。出厂设置清单见附录 B。

蜂鸣器

蜂鸣器是指 SDG2000X 前面板的按键声音和旋钮声音,当前面板或远程操作产生错误时会发出提示声音。选择 Utility → System → 蜂鸣器 ,选择"打开"或"关闭"。默认选择"打开"。

屏保

启用或禁用屏幕保护模式。选择 Utility → System → 当前页 1/2 → 屏保 ,选择打开或关闭屏保。打开屏保,无任意操作时,经过设定的时间仪器进入屏保状态,点击屏幕或按任意键恢复。

系统信息

选择 Utility → System → 当前页 1/2 → 系统信息 。系统信息的显示界面如下图所示。 检查完毕后,按任意按键或点击触摸屏退出系统信息界面。

Startup Times: 20
Software Version: 2.01.01.21R2
Hardware Version: 01-07-00-31-00
Product Type: SDG2122X
Serial No: 01234567890000

Please press any function key to exit!

图 2-40 系统信息显示界面

固件升级

SDG2000X 支持 U 盘进行固件升级和配置文件升级,操作步骤如下:

- 1. 把待升级的*.ADS 和*.CFG 文件拷贝到 U 盘。
- 2. 把U盘插入仪器前面板的USB Host 接口,系统提示"USB 设备已连接."。
- 3. 选择 Utility → System → 当前页 1/2 → 固件升级 ; 或者直接按 Store/Recall。
- 4. 旋转旋钮选择 USB Device (0:) 然后向下按下旋钮,或直接点击屏幕上 USB Device (0:) 所在位置,展开 U 盘目录,如图 2-41 所示。

图 2-41 固件升级界面

- 5. 找到 SDG2000X 的固件升级文件*.ADS 所在位置,选择 读取 或按下旋钮或者直接点击屏幕上已选中的升级文件,界面上会弹出升级进度条。
- 6. 固件升级完成后,设备会自动重启。
- 7. 检查升级版本信息:选择 Utility → System → 当前页 1/2 → 系统信息 ,检查升级后的软硬件版本号是否与目标版本一致,否则,升级不成功,需按如上步骤再次升级一次。

备注:

- 1. 升级过程中,请勿关机或掉电!
- 2. 给定的升级包内可能包含也可能不包含配置文件(*.CFG)。如果不包含配置文件,则不需要进行配置文件升级。

内置帮助系统

SDG2000X 提供内置帮助系统,在使用过程中可根据需要随时调出帮助信息。选择 Utility → System → 当前页 1/2 → 帮助 ,可进入帮助信息操作菜单,如图 2-42 所示:

图 2-42 帮助信息显示界面

表 2-32 帮助信息操作菜单说明

功能菜单	说明
向上	向上移动光标选择帮助信息菜单
向下	向下移动光标选择帮助信息菜单
选择	读取当前光标选中的帮助信息
取消	取消当前操作菜单并返回主菜单

所示的帮助信息显示菜单,有10个选项,可通过旋转旋钮、菜单选项来选择您要查看的信息。

1. 查看仪器信息

仪器信息中包括开机次数、软件版本号、硬件版本号、设备型号、序列号,可以在此界面下查看相关信息,帮助信息显示界面如下图所示:

图 2-43 查看仪器信息

2. 基本波形输出

介绍如何输出基本波形,帮助信息显示界面如下图所示:

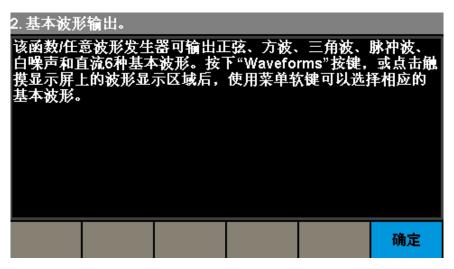


图 2-44 基本波形输出

3. 任意波输出

介绍如何创建一个任意波形,帮助信息显示界面如下图所示:

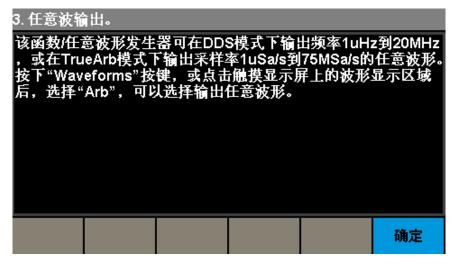


图 2-45 任意波输出

4. 调制波形输出

介绍如何输出调制信号,帮助信息显示界面如下图所示:

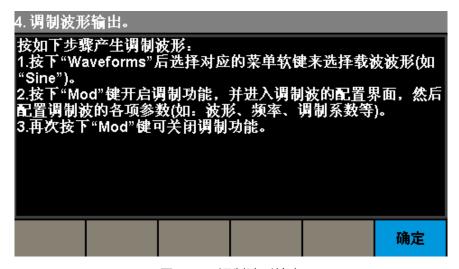


图 2-46 调制波形输出

5. 扫频波形输出

介绍如何输出扫频信号,帮助信息显示界面如下图所示:

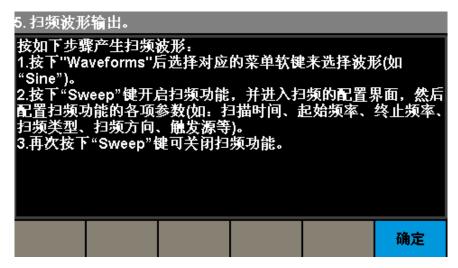


图 2-47 扫频波形输出

6. Burst 波形输出

介绍如何输出脉冲串信号,帮助信息显示界面如下图所示:

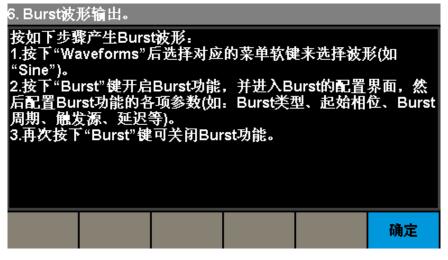


图 2-48 Burst 波形输出

7. 存储管理

介绍如何存储设置和操作,帮助信息显示界面如下图所示:

图 2-49 存储管理

8. 同步多台仪器

介绍如何操作同步多台仪器,帮助信息显示界面如下图所示:

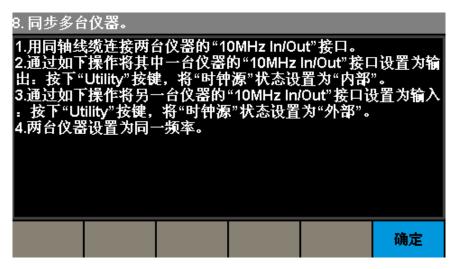


图 2-50 同步多台仪器

9. 恢复出厂设置

介绍如何将仪器恢复出厂设置,帮助信息显示界面如下图所示:

图 2-51 恢复出厂设置

10. 技术支持

提供深圳市鼎阳科技股份有限公司(SIGLENT)的技术支持联系方式,帮助信息显示界面如下图 所示:

图 2-52 技术支持

2.5.2 检测/校准

自测试

SDG2000X 提供自测试功能,包括屏幕测试、按键测试、点亮测试和板级测试。选择 Utility → 检测/校准 → 自测试 ,自测试显示界面如图所示:

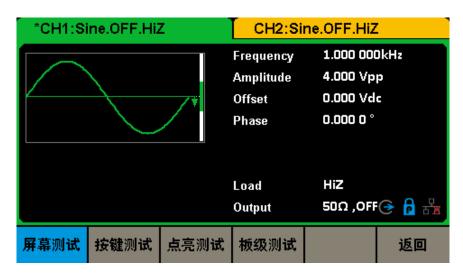


图 2-53 自测试界面

 功能菜单
 说明

 屏幕测试
 进行屏幕测试

 按键测试
 进行按键测试

 点亮测试
 进行按键指示灯点亮测试

 板级测试
 进行硬件电路自检

 取消
 放弃当前操作并返回主菜单

表 2-33 自测试操作菜单说明

屏幕测试

选择 屏幕测试 进入屏幕测试界面。此时屏幕上显示"Screen test: Please press '7' key to continue, press '8' key to exit."的提示信息。即提示按"7"键开始进行测试。观察屏幕是否有严重色偏或其它显示错误。如图所示:

图 2-54 屏幕测试界面

按键测试

选择 按键测试 进入按键测试界面。此界面上的图形区域代表面板上对应位置的按键。分别对所有按键和旋钮进行测试,观察其是否正确反应。

- 未测试前屏幕中的图形区域显示为白色;
- 已经测试的对应图形区域会显示为蓝色。
- 屏幕上显示"Keytest: Please press '8' key three times to exit."的提示信息表示按数字按键"8" 3 次退出测试。如下图所示:

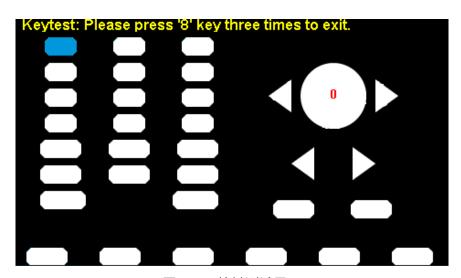


图 2-55 按键测试界面

点亮测试

选择 点亮测试 进入点亮测试界面,此界面上图形区域代表面板上对应位置的按键。此时屏幕上有"LED test: Please press '7' key to continue, press '8' key to exit."的提示信息。连续按"7"按钮,当按钮点亮时,屏幕上对应的区域就会显示为蓝色。如下图所示:

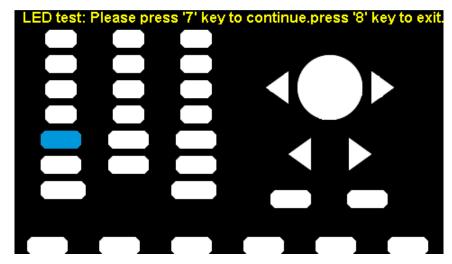


图 2-56 点亮测试界面

板级测试

选择 板级测试 进入板级测试界面。测试通过时对应项目的状态区域显示为"passed";测试不通过时对应项目的状态区域显示为"failed"。如下图所示:

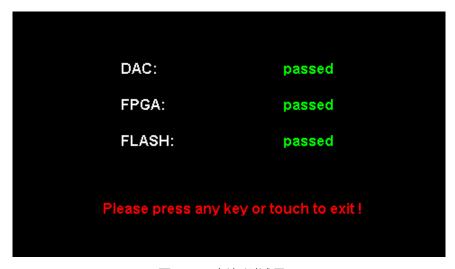


图 2-57 板级测试界面

触摸屏校准

定期使用此功能对仪器屏幕触摸的感应系统进行校正,使手指或触摸笔触摸屏幕时更准确,避免误操作。选择 Utility → 检测/校准 → 触摸屏校正 ,校准界面如图所示:

图 2-58 触摸屏校准界面

按照提示依次点击屏幕左上角、右上角、右下角和左下角的红色圆圈,校准成功后出现以下提示,点击触摸屏或按任意键退出触摸屏校准界面。

触摸屏校准完成,按任意键退出。

图 2-59 触摸屏校准完成界面

2.5.3 频率计

SDG2000X 内置高精度、宽频带频率计,可测量 100mHz~200MHz 的输入信号。双通道输出可与频率计测量同时进行。在 Utility 菜单中选择 频率计 进入频率计菜单显示窗口,如下图所示。

图 2-60 频率计显示界面

表 2-34 频率计设置菜单说明

功能菜单	说明	
频率/周期	显示测量的频率或周期	
正脉宽/负脉宽	显示测量的正脉宽或负脉宽	
参考频率	设置参考频率	
触发电平	设置触发电平,当输入信号达到指定的触发电平时,系统触 发并获取测量读数	
占空比	显示测量的占空比	
设置	进入频率计设置菜单	
清除	统计数据清零	

频率计设置操作菜单如下:

模式	高频抑制	8421255.空	测量	74.
	关闭		慢速测量	- 明正

表 2-35 频率计设置菜单说明

功能菜单	设定	说明	
高频抑制	打开	开启高频抑制功能,在测量低频信号时滤除高频噪声, 提高测量精确度	
	关闭	关闭高频抑制功能	
模式	AC	设置为 AC 耦合方式	
俣玌	DC	设置为 DC 耦合方式	
默认设置		恢复默认设置	
测量	慢速测量	测量慢,统计样本多	
	快速测量	测量快,统计样本少	
确定		返回上一级菜单	

1. 选择被测参数

频率计可以测量如下参数:频率、周期、占空比、正脉宽和负脉宽。

2. 参考频率

设置被测量信号频率的参考频率,仪器可自动计算出频率偏差。

3. 触发电平

设置测量系统的触发电平。当输入信号达到指定的触发电平时,系统触发并获取测量读数。默认值为 0V,可设置范围为-3V 至 1.8V。选择 触发电平 ,使用数字键盘输入所需的数值,在弹出的单位菜单中选择所需的单位(V 或 mV);或使用旋钮和方向键改变其数值。

4. 模式

设置输入信号的耦合方式为"AC"或"DC"。默认为"AC"。

5. 高频抑制

在测量低频信号时,高频抑制可用于滤除高频噪声,提高测量精确度。选择 高频抑制 ,打开或关闭高频抑制功能。默认为"关闭"。

- 在测量频率小于 250kHz 的低频信号时, 打开高频抑制, 以滤除高频噪声干扰;
- 在测量频率大于 250kHz 的高频信号时, 关闭高频抑制, 此时可测量的最大频率为 200MHz。

2.5.4 输出设置

在输出设置菜单中可设置负载/高阻、常规/反相和同相位相应参数。选择 Utility → 输出设置 ,可进入如下菜单显示窗口,如图 2-61 和图 2-62 所示:

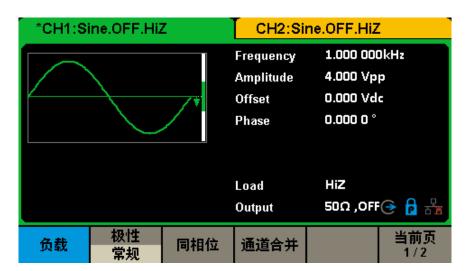


图 2-61 输出设置界面

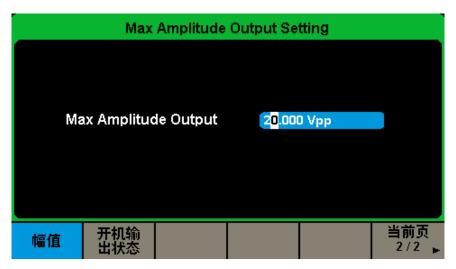


图 2-62 输出设置界面

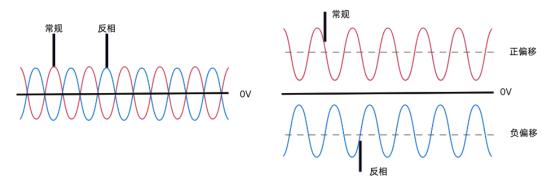
表 2-36 输出设置功能菜单说明

功能菜单	设定	说明	
负载	50Ω	设置 Output 输出的负载值为 50Ω	
火 報	高阻	设置 Output 输出的负载为高阻	
极性	常规	设置波形常规输出	
	反相	设置波形反相输出	

同相位	使通道 1 和通道 2 相位相同
通道合并	使通道 1 和通道 2 合并
幅值	设置通道输出幅值限制
开机输出状态	设置开机后通道输出状态
当前页	切换菜单页

负载

选择 Utility \rightarrow 输出设置 \rightarrow 负载 ,选择 高阻 或 50Ω 。或使用数字键盘或旋钮设置具体阻抗值。也可以长按相应的 Output 键 2 秒在高阻和 50Ω 键切换。


高阻:显示HiZ;

负载:显示阻值(默认为 50Ω ,范围为 50Ω 至 $100k\Omega$)。

SDG2000X 内部提供 50Ω 的固定串联输出阻抗。负载值的设定是用户将外部负载值告知仪器的过程,提供此选项的目的是为了使用户将显示的信号参数(如幅度和偏移量)与期望值相一致,也就是说如果实际负载的阻抗与指定的阻抗不一致,显示的信号参数(如幅度和偏移量)是存在偏差的。因此要保证实际负载的阻抗与指定的阻抗是相一致的。

极性

设置 CH1 或 CH2 连接器上的信号为常规输出或反相输出。波形反相是相对于 0V 偏移量电压进行 反相。如下图所示:

备注:在波形反相时,与波形相关的同步信号并不反相。

同相位

SDG2000X 提供同相位功能,选择同相位后,仪器将重新配置两个通道,使其按照设定的频率和相位输出。对于同频率或频率呈倍数关系的两个信号,通过该操作可以使其相位对齐。

通道合并

信号源的通道 1 输出端口,在一般模式下输出 CH1 的波形,在合并模式下可输出 CH1+CH2 的波形;同理,信号源的通道 2 输出端口,在一般模式下输出 CH2 的波形,在合并模式下可输出 CH1+CH2 的波形。

按 Utility → 输出设置 → 通道合并 ,进入通道合并功能界面,如下图所示:

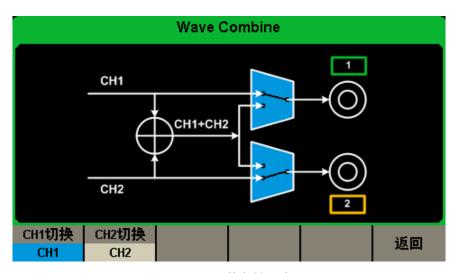


图 2-63 通道合并示意图

功能菜单	设定	说明
CH1 切换	CH1	CH1 以 CH1 的配置输出波形
	CH1+CH2	CH1 以 CH1+CH2 的配置输出波形
CH2 切换	CH2	CH2 以 CH2 的配置输出波形
	CH1+CH2	CH2 以 CH1+CH2 的配置输出波形
返回		完成当前操作并返回上一级菜单

表 2-37 通道合并功能菜单说明

备注:

在波形合并功能打开时,强制将两个通道的"Load"值设定为一致,默认使用输出合并波形的通道的当前"Load"值。

幅值

在一些应用场景下, 用户需要限制通道输出的幅度, 以确保不会损伤对幅度敏感的信号接收设备。按 Utility → 输出设置 → 当前页 1/2 → 幅值 , 进入幅度设置页面, 对最大输出幅度进行限制。默认的最大幅度为设备能够提供的最大幅度值。设置后立即生效于两通道。

开机输出状态

在一些应用场景下,用户需要开机一上电通道输出就打开。按 Utility \rightarrow 输出设置 \rightarrow 当前 \rightarrow 1/2 \rightarrow 开机输出状态 \rightarrow 状态 设置"打开"。该功能需要将开机上电设置为上次或自定义模式,具体设置参考 2.5.1 节

2.5.5 通道复制和耦合

通道复制

SDG2000X 支持两个通道间的状态和波形互相复制的功能,即将其中一个通道的所有参数设置和状态复制到另一个通道。

选择 Utility → 通道复制 耦合 → 通道复制 , 进入通道复制设置界面, 如图 2-64 所示:

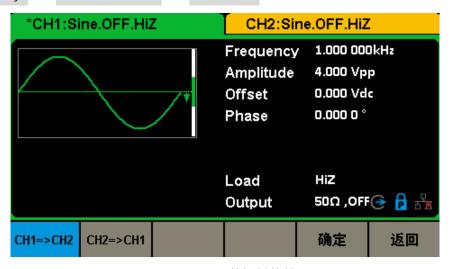


图 2-64 通道复制菜单

表 2-38 通道复制菜单说明

功能菜单	说明
CH1=>CH2	将 CH1 的所用参数设置和状态复制到 CH2
CH2=>CH1	将 CH2 的所用参数设置和状态复制到 CH1
确定	完成当前操作并返回主菜单
返回	放弃当前操作返回上一级菜单

注意:

耦合和跟踪功能均与通道复制功能互斥,打开通道耦合或跟踪功能时, 通道复制 菜单将不显示。

耦合

SDG2000X 支持频率、幅度和相位的耦合。您可以设置两个通道的频率偏差/频率比例、幅度偏差/幅度比例或相位偏差/相位比例。当耦合功能打开时,CH1 和 CH2 互为基准源,当改变其中一个通道(该通道作为基准源)的频率、幅度或相位时,另一通道的频率、幅度或相位将自动调整,并总是与基准通道保持指定的偏差/比例。

选择 Utility → 通道复制 耦合 → 通道耦合 ,进入通道耦合设置界面,如下图所示:

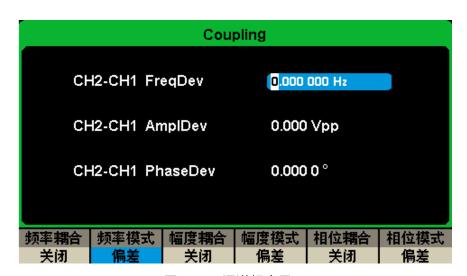


图 2-65 通道耦合界面

频率耦合

1. 打开频率耦合

按 频率耦合 ,可以打开或关闭频率耦合功能。默认为"关闭"。

2. 频率模式

按 频率模式 , 可以选择"频率偏差"或"频率比例", 然后使用数字键盘或方向键和旋钮输入所需的值。

● 频率比例: CH2 和 CH1 的频率比例。参数关系为: FreqCH2:FreqCH1=FreqRatio。

● 频率偏差: CH2 和 CH1 的频率偏差。参数关系为: FreqCH2-FreqCH1=FreqDev。

幅度耦合

1. 打开幅度耦合

按「幅度耦合」,可以打开或关闭幅度耦合功能。默认为"关闭"。

2. 幅度模式

按 幅度模式 ,可以选择"幅度偏差"或"幅度比例",然后使用数字键盘或方向键和旋钮输入所需的值。

- 幅度比例: CH2 和 CH1 的幅度比例。参数关系为: AmplCH2: AmplCH1=AmplRatio。
- 幅度偏差: CH2 和 CH1 的幅度偏差。参数关系为: AmplCH2-AmplCH1=AmplDev。

相位耦合

1. 打开相位耦合

按 相位耦合 ,可以打开或关闭相位耦合功能。默认为"关闭"。

2. 相位模式

按 相位模式 ,可以选择"相位偏差"或"相位比例",然后使用数字键盘或方向键和旋钮输入所需的值。

- 相位比例: CH2 和 CH1 的相位比例。参数关系为: PhaseCH2: PhaseCH1=PhaseRatio。
- 相位偏差: CH2 和 CH1 的相位偏差。参数关系为: PhaseCH2- PhaseCH1=PhaseDev。

要点说明:

- 1. 耦合功能仅在两通道均为基本波(Sine、Square、Ramp、Pulse 或 Arb)模式时有效。
- 当相位耦合功能打开时,修改其中一个通道的相位,另一通道的相位将随之改变,此时无需执行同相位功能就能使两通道真正同相位。
- 3. 通道耦合与通道复制功能互斥, 当耦合功能打开时, 通道复制 菜单将不显示。

跟踪

当跟踪功能打开时,调整 CH1 的参数或状态时,CH2 的相应参数或状态自动调整为与 CH1 相同的参数或状态,此时,双通道可输出相同的信号。

选择 Utility → 通道复制 耦合 → 跟踪 ,可以打开或关闭跟踪功能。跟踪功能打开时,通道复制和耦合功能菜单将不显示,用户界面切换到 CH1,而且不能切换至 CH2,如下图所示。

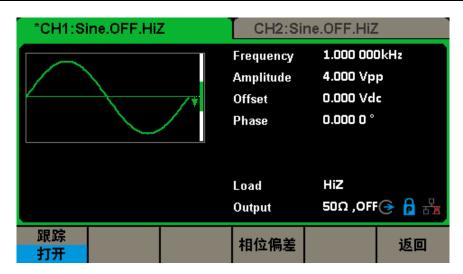


图 2-66 跟踪功能界面

选择。相位偏差。,进入相位偏差设置界面,然后使用数字键盘或方向键和旋钮输入所需的值。

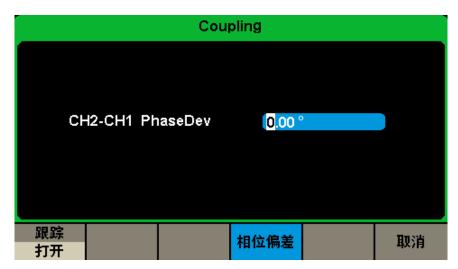


图 2-67 相位偏差设置界面

● 相位偏差: CH2 和 CH1 的相位偏差。参数关系为: Phasech2- Phasech1=PhaseDev。

手动触发

设置两通道在手动触发时 trigger 信号的模式。

选择 Utility → 通道复制 耦合 → 手动触发 可以选择设置"单通道"或"双通道"。

- 单通道:手动触发 trigger 信号仅在当前通道生效。
- 双通道:手动触发 trigger 信号两通道都生效。

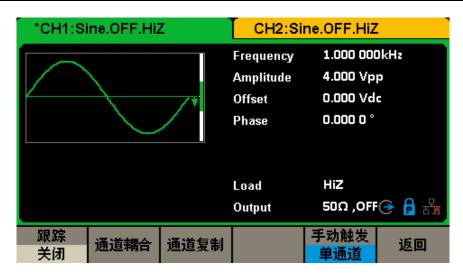


图 2-68 单通道

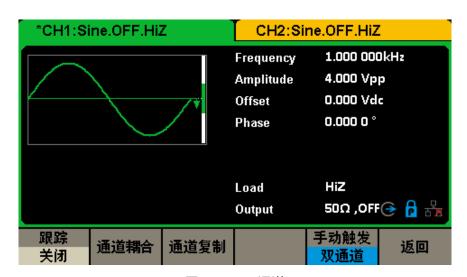


图 2-69 双通道

比如两通道都打开 sweep,并设置手动触发,当设置 single CH 时,手动触发 trigger 信号,只有当前通道输出 sweep,另一通道无输出;当设置 Dual CH 时,手动触发 trigger 信号,两通道都会输出 sweep。

2.5.6 接口设置

SDG2000X 配有 USB、LAN(VXI-11)和 GPIB(选件)接口。用户可根据需要设置 GPIB 和 LAN 接口参数,USB 参数无需配置。选择 Utility \rightarrow 当前页 1/2 \rightarrow 接口设置 ,打开接口设置菜单,如图 2-70 所示。

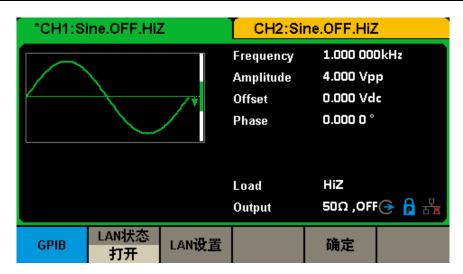


图 2-70 接口设置界面

表 2-39 接口设置

功能菜单	设定	说明
GPIB		通用接口总线
LAN 状态	打开	打开 LAN
LAN 1人心	关闭	关闭 LAN
LAN 设置		设置仪器通信的 IP 地址、子网掩码和默认网关
确定		保存当前设置并返回上一级菜单

您可通过如下两种方式远程控制 SDG2000X:

● 用户自定义编程

用户可以通过标准 SCPI(Standard Commands for Programmable Instruments)命令对仪器进行编程控制。有关命令和编程的详细说明请参考本产品的《编程手册》。

● 使用 PC 软件

用户可以使用 NI(National Instruments Corporation)公司的"Measurement & Automation Explorer"软件对仪器进行控制。

USB 设置

SDG2000X 支持 USBTMC 协议与计算机进行通信。您需要完成以下操作建立连接。

1. 连接设备

使用 USB 数据线将 SDG2000X(通过仪器后面板的 USB Device 接口)与计算机相连。

2. 计算机安装 USBTMC 驱动

推荐使用 NI Visa。

3. 与计算机进行远程通信

打开"Measurement & Automation Explorer"软件,选择仪器对应的资源名称后,选择"Open VISA Test Panel",打开远程命令控制面板,即可通过该面板发送命令和读取数据。

GPIB 设置

GPIB 接口上的每个设备都必须具有唯一的地址。GPIB 出厂默认值为 18,设置范围为 1-30。所选地址保存在非易失性存储器中,并且在通电时显示。

1. 连接设备

使用 USB-GPIB 模块(选件)将 SDG2000X 与计算机相连。请确保您的计算机已安装 GPIB 卡,然后将 USB-GPIB 模块的 USB 端连接至 SDG2000X 前面板的 USB Host 接口,将 USB-GPIB 模块的 GPIB 端连接至计算机的 GPIB 卡端口。

2. 计算机安装 GPIB 卡驱动程序

请正确安装连接至计算机的 GPIB 卡驱动程序。

3. 设置仪器的 GPIB 地址

进入辅助系统功能的操作菜单后,选择 接口设置 → GPIB ,进入如图 2-71 所示界面,用户可以通过旋转旋钮、方向键和数字键盘改变其数值,输入完成后选择 确定 保存当前设置。

图 2-71 GPIB 参数设置界面

4. 与计算机进行远程通信

打开"Measurement & Automation Explorer"软件,成功添加 GPIB 设备后,打开远程命令控制面板,即可通过该面板发送命令和读取数据。

LAN 设置

SDG2000X 提供通过 LAN 接口进行远程操作,您可以查看和修改当前的 LAN 配置。

1. 连接设备

使用网线将 SDG2000X 连接至计算机或计算机所在的局域网中。

2. 配置网络参数

进入辅助系统功能的操作菜单后,选择 接口设置 → LAN 状态 → 打开 ,打开网络, 然后选择 LAN 设置 ,进入下面所示界面。

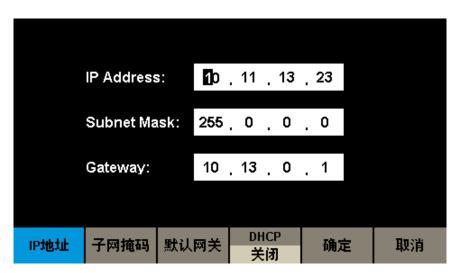


图 2-72 局域网参数设置界面

功能菜单 设定 说明 IP 地址 设置 IP 地址 子网掩码 设置子网掩码 默认网关 设置默认网关 打开 动态配置 IP 地址等网络参数 DHCP 关闭 手动设置 IP 地址等网络参数 确定 保存当前设置并返回上一级菜单 取消更改,返回上一级菜单 取消

表 2-40 局域网参数设置

设置 IP 地址

IP 地址的格式为 nnn.nnn.nnn.nnn,第一个 nnn 的范围为 1 至 223,其他三个 nnn 的范围为 0 至 255。建议您向网络管理员咨询一个可用的 IP 地址。

选择 IP 地址 ,使用方向键和数字键盘或旋钮输入所需的 IP 地址。该设置将保存在非易失性存储器中,下次开机时,仪器将自动加载所设的 IP 地址。

设置子网掩码

子网掩码的格式为 nnn.nnn.nnn, 其中 nnn 的范围为 0 至 255。建议您向网络管理员咨询一个可用的子网掩码。

选择 子网掩码 ,使用方向键和数字键盘或旋钮输入所需的子网掩码。该设置将保存在非易失性存储器中,下次开机时,仪器将自动加载所设的子网掩码。

设置默认网关

默认网关的格式为 nnn.nnn.nnn, 其中 nnn 的范围为 0 至 255。建议您向网络管理员咨询一个可用的默认网关。

选择、默认网关、,使用方向键和数字键盘或旋钮输入所需的默认网关。该设置将保存在非易失性存储器中,下次开机时,仪器将自动加载所设的默认网关。

说明:

- 若仪器与计算机直接相连,分别设置仪器与计算机的 IP 地址、子网掩码和默认网关。二者的子网掩码和默认网关必须相同,二者的 IP 地址必须处于同一网段内。
- 若仪器被连接至计算机所在的局域网,请从您的网络管理员处获取可用的 IP 地址等网络参数,请参阅 TCP/IP 网络协议相关知识。

DHCP

该模式下,由当前网络中的 DHCP 服务器向信号发生器分配 IP 地址等网络参数。按 DHCP 按键,选择"打开"或"关闭"DHCP 配置模式,默认为"关闭"。

3. 与计算机进行远程通信

打开"Measurement & Automation Explorer"软件,成功添加网络设备 (VISA TCP/IP Resource...) 后,选择仪器对应的资源名称,选择"Open VISA Test Panel",打开远程命令控制面板,即可通过该面板发送命令和读取数据。

2.5.7 同步

当同步打开时,仪器后面板的【Aux In/Out】接口可以输出一个与基本波形(Noise 和 DC 除外)、任意波形、调制波形(外部调制除外)同频率的 CMOS 信号,最大频率为 10MHz。

选择 Utility → 当前页 1/2 → 同步 , 同步的设置界面如图 2-73 所示:

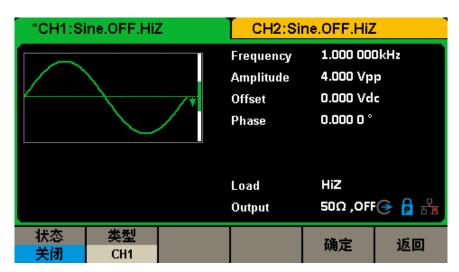


图 2-73 同步设置界面

功能菜单	设定	说明
状态	打开	打开同步输出
	关闭	关闭同步输出
通道	CH1	选择通道 1 为同步输出的源
	CH2	选择通道 2 为同步输出的源
确定		完成同步设置,返回上一级菜单
返回		取消当前设置,返回上一级菜单

表 2-41 输出设置功能菜单说明

各种波形的同步信号:

1. 基本波形

- 1) 基本波形的频率小于等于 10MHz 时,同步信号是脉宽固定为 50ns 的脉冲波,频率为基本波形的频率。
- 2) 基本波形的频率大于 10MHz 时,无同步信号。
- 3) 噪声和直流:无同步信号。

2. 任意波

同步信号是脉宽固定为 50ns 的脉冲波, 频率为任意波形的频率。

3. 已调波形

1) 内部调制时,同步信号是脉宽固定为 50ns 的脉冲波。

对于 AM、DSB-AM、FM、PM 和 PWM,同步信号的频率为调制频率。

对于 ASK、FSK 和 PSK,同步信号的频率为键控频率。

2) 外部调制时, 仪器后面板的【Aux In/Out】接口用于输入外部调制信号, 无同步信号输出。

4. Sweep 和 Burst 输出波形

当 Sweep 和 Burst 功能打开时,无同步信号输出,此时不显示。同步《菜单。

2.5.8 时钟源

SDG2000X 提供内部 10MHz 的时钟源,也接收从仪器后面板的【10MHz In/Out】输入的外部时钟源(输入频率要求:频率为 10MHz,最小幅度为 1.4Vpp),还可以从【10MHz In/Out】连接器输出时钟源供其它设备使用。

选择 Utility → 当前页 1/2 → 时钟 → 时钟源 ,选择"内部"或"外部"。默认选择"内部"。 若选择"外部",系统将检测仪器后面板的【10MHz In/Out】连接器是否有有效的外部时钟信号输入。 若没有检测到有效的外部时钟源,则弹出提示消息"未检测到外部时钟源!",时钟源显示为"外部"。

仪器间的同步方法:

● 两台仪器的同步

将一台仪器(时钟源为"内部")的【10MHz In/Out】连接到另一台仪器(时钟源为"外部")的【10MHz In/Out】,然后将两台仪器设置相同的输出频率,即可实现两台仪器的同步。

● 多台仪器的同步

将一台仪器(时钟源为"内部")的 10MHz 时钟源分成多路,然后分别连接到多台仪器(时钟源为"外部")的【10MHz In/Out】,再将每台仪器设置相同的输出频率,即可实现多台仪器的同步。

2.5.9 模式

选择 Utility → 当前页 1/2 → 模式 ,进入如图 2-74 所示模式设置界面。

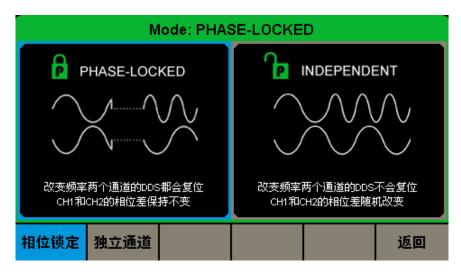


图 2-74 模式设置界面

相位锁定

改变频率时, 两个通道的 DDS 都会复位, 并保持通道 1 和通道 2 间的相位差不变。

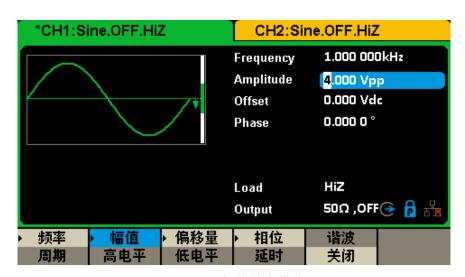


图 2-75 相位锁定模式

独立通道

改变频率时,两个通道的 DDS 不会复位,通道 1 和通道 2 的相位差随机改变。此时禁止设置相位参数, 相位 菜单将不显示,如图 2-76 所示。

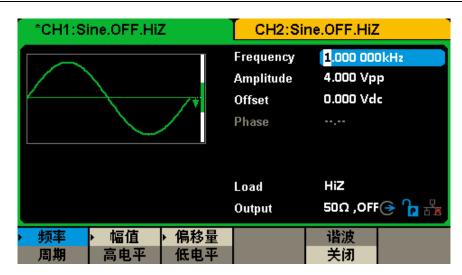


图 2-76 独立通道模式

2.5.10 过压保护

选择 Utility → 当前页 1/2 → 过压保护 ,可进入过压保护设置界面,如图 2-77 所示。 用户可以选择打开或关闭过压保护功能。

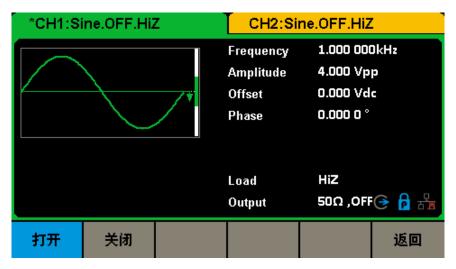


图 2-77 过压保护设置界面

CH1和CH2通道输出端设有过压保护功能,满足下列条件之一则产生过压保护。产生过压保护时, 屏幕弹出提示消息,输出关闭。

- 仪器幅值设置 ≥ 3.2Vpp 或输出偏移≥l2VDCI, 输入电压的绝对值大于 11V±0.5V。
- 仪器幅值设置 < 3.2Vpp 且输出偏移 < |2VDC|,输入电压的绝对值大于 4V±0.5V。

2.5.11 多设备同步

选择 Utility → 当前页 1/3 → 当前页 2/3 → 多设备同步 , 可进入多设备同步设置界面, 如图 2-78 所示。

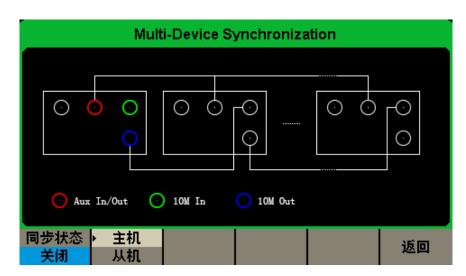


图 2-78 多设备同步设置界面

SDG2000X 支持两台或多台仪器间的同步并可实现同相位输出。具体操作步骤如下:

- 1. 进入多设备同步设置界面后,将所有仪器的"同步状态"设置为"打开";
- 2. 将其中一台仪器设置为"主机",其他仪器设置为"从机";
- 3. 将主机的【Aux In/Out】分成多路,然后分别连接到其他从机的【Aux In/Out】;
- 4. 通过菊花链的方式将多台仪器的时钟串联起来。将第一台仪器(主机)的【10MHz Out】连接到第二台仪器的【10MHz In】,再将第二台仪器的【10MHz Out】连接到第三台仪器的【10MHz In】,以此类推,将前一台仪器的【10MHz Out】连接到下一台仪器的【10MHz In】;
- 5. 将所有仪器设置相同频率,并打开通道输出:
- 6. 在主机上按下 同步设备 ,即可实现所有仪器的同步同相位输出

注意:

按下 同步设备 后,同步信号通过主机的【Aux In/Out】经由 BNC 线缆传输到从机的【Aux In/Out】,从机接收到同步信号的时机相对主机会有一定延迟,因此从机和主机的输出波形实际上存在一定的相位差,相位差大小和所使用的 BNC 线缆相关,推荐使用产品标配的 BNC 线缆。

3 应用实例

本章主要介绍几个应用实例,目的是方便用户能快速掌握和运用 SDG2000X。没有特别说明,以下实例都是在系统的默认设置上进行的。

本章实例主要包括以下例子:

- 输出正弦波波形
- 输出方波波形
- 输出三角波波形
- 输出脉冲波形
- 输出噪声
- 输出线性扫描波形
- 输出脉冲串波形
- 输出 AM 调制波形
- 输出 DSB-AM 调制波形
- 输出 FM 调制波形
- 输出 PM 调制波
- 输出 FSK 调制波形
- 输出 ASK 调制波形
- 输出 PSK 调制波形
- 输出 PWM 调制波形

3.1 输出正弦波波形

输出一个频率为 50KHz、幅值为 5Vpp、偏移量为 1Vdc 的正弦波波形。操作步骤如下:

设置频率值:选择 Waveforms → Sine → 【频率/周期】 → 频率

使用数字键盘输入"50"→选择单位"KHz"→50KHz

设置幅度值:选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

设置偏移量:选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"1"→选择单位"Vdc"→1Vdc

将频率、幅度和偏移量设定完毕后,选择当前所编辑的通道输出,便可输出您设定的正弦波,如图 3-1 所示:

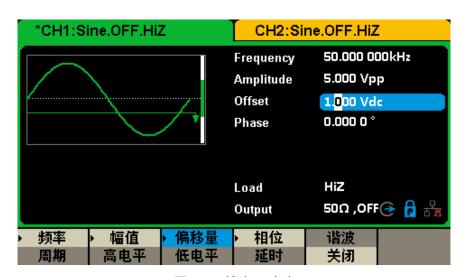


图 3-1 输出正弦波

3.2 输出方波波形

输出一个频率为 50KHz、幅值为 5Vpp、偏移量为 1Vdc、占空比为 60%的方波波形。操作步骤如下:

设置频率值:选择 Waveforms → Square →【频率/周期】→ 频率 使用数字键盘输入"50" →选择单位"KHz"→50KHz

设置幅度值:选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

设置偏移量:选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"1"→选择单位"Vdc"→1Vdc

设置占空比:选择 占空比

使用数字键盘输入"60"→选择单位"%"→60%

将频率、幅度、偏移量和占空比设定完毕后,选择当前所编辑的通道输出,便可输出您设定的方 波波形,如图 3-2 所示:

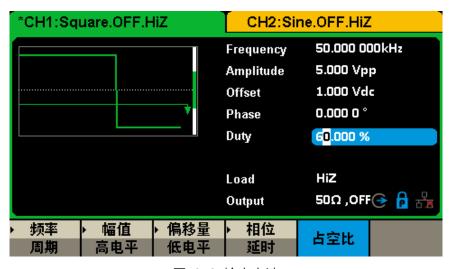


图 3-2 输出方波

3.3 输出三角波波形

输出一个周期为 20μs、幅值为 5Vpp、偏移量为 1Vdc、对称性为 60%的三角波波形。操作步骤如下:

设置周期值:选择 Waveforms → Ramp → 【频率/周期】 → 频率

使用数字键盘输入"20"→选择单位"µs"→20µs

设置幅度值:选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

设置偏移量:选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"1"→选择单位"Vdc"→1Vdc

设置对称性:选择 对称性

使用数字键盘输入"60"→选择单位"%"→60%

将周期、幅度、偏移量和对称性设定完毕后,选择当前所编辑的通道输出,便可输出您设定的三角波波形,如图 3-3 所示:

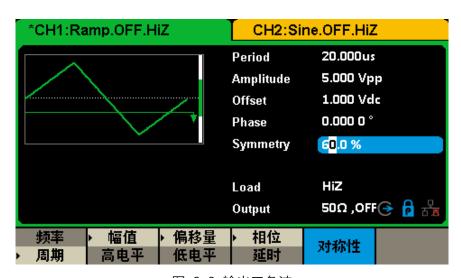


图 3-3 输出三角波

3.4 输出脉冲波形

输出一个周期为 50KHz、高电平为 5V、低电平为 1V、脉宽为 10μs、上升沿 20ns、延时为 20ns 的脉冲波形。操作步骤如下:

设置频率值:选择 | Waveforms | → Pulse | →【频率/周期】→ | 频率

使用数字键盘输入"50"→选择单位"KHz"→50KHz

设置高电平:选择【幅值/高电平】→ 高电平

使用数字键盘输入"5"→选择单位"V"→5V

设置低电平:选择【偏移量/低电平】→ 低电平

使用数字键盘输入"1"→选择单位"V"→1V

设置脉宽: 选择【脉宽/占空比】→ 脉宽

使用数字键盘输入"10"→选择单位"µs"→10µs

设置上升沿:选择【上升沿/下降沿】→ 上升沿

使用数字键盘输入"20"→选择单位"ns"→20ns

设置延迟: 选择 延迟

使用数字键盘输入"20"→选择单位"ns"→20ns

将频率、高电平、低电平、脉宽、上升沿和延迟设定完毕后,选择当前所编辑的通道输出,便可输出您设定的脉冲波形,如图 3-4 所示:

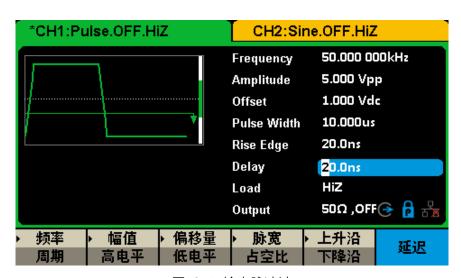


图 3-4 输出脉冲波

3.5 输出噪声

输出一个标准差为 50mV、均值为 20mV 的噪声。操作步骤如下:

设置标准差:选择 Waveforms → Noise → 标准差

使用数字键盘输入"50"→选择单位"mVpp"→50mV

设置均值: 选择 均值

使用数字键盘输入"20"→选择单位"mVdc"→20mV

将标准差和均值设定完毕后,选择当前所编辑的通道输出,便可输出您设定的噪声,如图 3-5 所示:

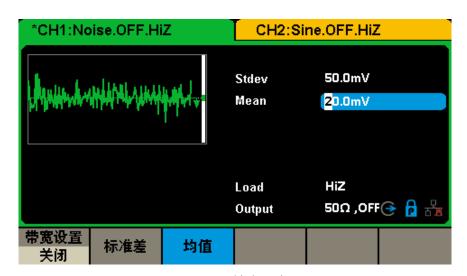


图 3-5 输出噪声

3.6 输出线性扫描波形

输出一个从 2KHz-10KHz 的扫频正弦波,采用内部扫描触发方式,线性扫频时间为 2 秒。操作步骤如下:

设置扫描函数的参数

设置幅度值:选择 | Waveforms | → | Sine | → 【幅值/高电平】 → | 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

设置偏移量: 选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

设置扫描模式及相应参数

开启扫频: 选择 Sweep

设置扫描时间:选择 扫描时间

使用数字键盘输入"2"→选择单位"s"→2s

设置终止频率:选择【终止频率/频率范围】→ 终止频率

使用数字键盘输入"10"→选择单位"KHz"→10KHz

设置起始频率: 选择【起始频率/中心频率】→ 起始频率

使用数字键盘输入"2"→选择单位"KHz"→2KHz

设置扫描类型:选择 当前页 1/2 → 扫描类型 → 线性

将扫描函数的参数和扫描模式设定完毕后,选择当前所编辑的通道输出,便可输出您设定的线性扫描波形,如图 3-6 所示:

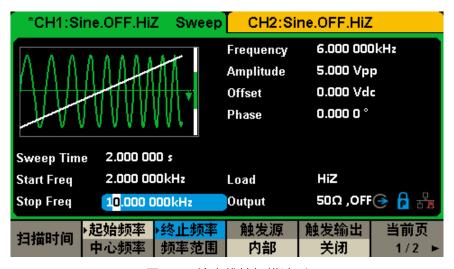


图 3-6 输出线性扫描波形

3.7 输出脉冲串波形

使用内部触发源,输出一个起始相位为 0° 、循环数为 5、Burst 周期为 3ms 和延迟时间为 500μ s 的脉冲串波形。操作步骤如下:

设置正弦波的参数

设置频率值:选择 | Waveforms | → Sine | → 【频率/周期】 → 频率

使用数字键盘输入"5"→选择单位"KHz"→5KHz

设置幅度值:选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

设置偏移量:选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

设置脉冲串模式及相应参数

开启脉冲串: 选择 | Burst | → N循环

设置扫描时间:选择 Burst 周期

使用数字键盘输入"3"→选择单位"ms"→3ms

设置起始相位:选择 起始相位

使用数字键盘输入"0"→选择单位"°"→0°

设置循环数: 选择【循环数/无限】→ 循环数

使用数字键盘输入"5"→选择单位"Cycle"→5 Cycle

设置延迟时间:选择 当前页 1/2 → 延迟

使用数字键盘输入"500"→选择单位"µs"→500µs

将正弦波参数和脉冲串模式及相应参数设定完毕后,选择当前所编辑的通道输出,便可输出您设定的脉冲串波形、如图 3-7 所示:



图 3-7 输出脉冲串波形

3.8 输出 AM 调制波形

输出一个载波频率为 10KHz、幅值为 5Vpp, 调制波频率为 200Hz 的 AM 波形, 调制深度为 80%, 载波和调制波波形均为 Sine。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】→ 频率

使用数字键盘输入"10"→选择单位"KHz"→10 KHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 | Mod | → 调制类型 → AM

选择调制频率

使用数字键盘输入"200"→选择单位"Hz"→200Hz

选择 调制深度

使用数字键盘输入"80"→选择单位"%"→80%

选择 调制波形 → Sine

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 AM 波形,如图 3-8 所示:

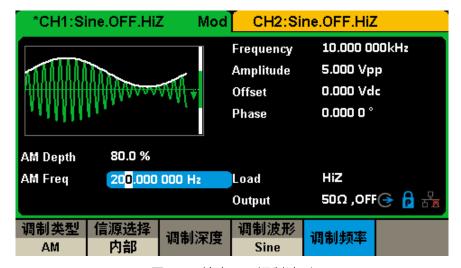


图 3-8 输出 AM 调制波形

3.9 输出 DSB-AM 调制波形

输出一个载波频率为 1MHz, 幅度为 4Vpp, 调幅频率为 1KHz 的 DSB-AM 波形, 载波和调制波均为 Sine。操作步骤如下:

设置载波参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】→ 频率

使用数字键盘输入"1"→选择单位"MHz"→1MHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"4"→选择单位"Vpp"→4Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod → 调制类型 → DSB-AM

选择调制频率

使用数字键盘输入"1"→选择单位"KHz"→1KHz

选择 调制波形 → Sine

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 DSB-AM 波形,如图 3-9 所示:

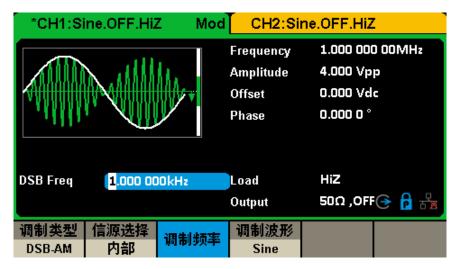


图 3-9 输出 DSB-AM 调制波

3.10 输出 FM 调制波形

输出一个载波频率为 10KHz、幅值为 5Vpp, 调制波频率 1Hz 的 FM 波形, 频偏为 2KHz。载波和调制波波形均为 Sine。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】→ 频率

使用数字键盘输入"10"→选择单位"KHz"→10KHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod → 调制类型 → FM

选择调制频率

使用数字键盘输入"1"→选择单位"Hz"→1Hz

选择 频率偏差

使用数字键盘输入"2"→选择单位"KHz"→2KHz

选择 调制波形 → Sine

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 FM 波形,如图 3-10 所示:

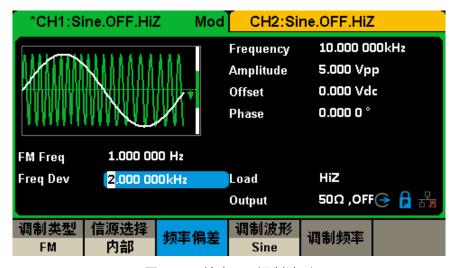


图 3-10 输出 FM 调制波形

3.11 输出 PM 调制波

输出一个载波频率为 10KHz、幅值为 5Vpp 的 PM 波形,调相频率为 2KHz,相位偏差为 90°,载 波和调制波波形均为 Sine。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】 → 频率

使用数字键盘输入"10"→选择单位"KHz"→10 KHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod → 调制类型 → PM

选择调制频率

使用数字键盘输入"2"→选择单位"KHz"→2KHz

选择 相位偏差

使用数字键盘输入"90"→选择单位"°"→90°

选择 调制波形 → Sine

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 PM 波形,如图 3-11 所示:

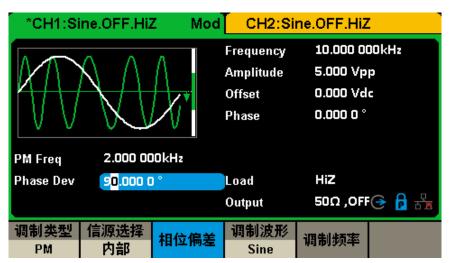


图 3-11 输出 PM 调制波形

3.12 输出 FSK 调制波形

输出一个载波频率为 10KHz, 跳频频率为 200Hz, 键控频率为 100Hz 的 FSK 波形。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine →【频率/周期】→ 频率

使用数字键盘输入"10"→选择单位"KHz"→10 KHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod → 调制类型 → FSK

选择 键控频率

使用数字键盘输入"100"→选择单位"Hz"→100Hz

选择 跳频频率

使用数字键盘输入"200"→选择单位"Hz"→200Hz

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 FSK 波形,如图 3-12 所示:

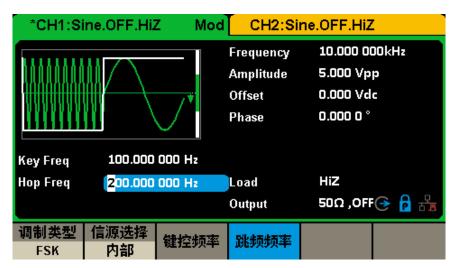


图 3-12 输出 FSK 调制波形

3.13 输出 ASK 调制波形

输出一个载波频率为 1MHz, 键控频率为 1KHz 的 ASK 波形。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】 → 频率

使用数字键盘输入"1"→选择单位"MHz"→1MHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod → 调制类型 → ASK

选择 键控频率

使用键盘输入"1"→选择单位"KHz"→1KHz

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的ASK波形,如图 3-13 所示:

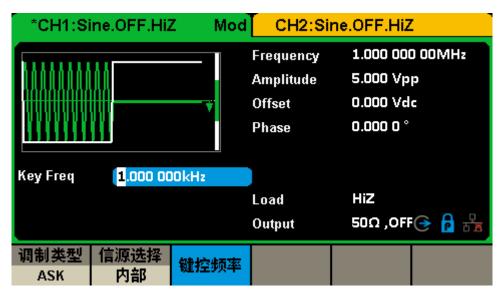


图 3-13 输出 ASK 调制波形

3.14 输出 PSK 调制波形

输出一个载波频率为 1kHz, 键控频率为 200Hz 的 PSK 波形。操作步骤如下:

设置载波的参数(正弦波)

选择 Waveforms → Sine → 【频率/周期】 → 频率

使用数字键盘输入"1"→选择单位"kHz"→1kHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"5"→选择单位"Vpp"→5Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择调制方式并设置调制参数

选择 Mod \rightarrow 调制类型 \rightarrow 当前页 1/2 \rightarrow PSK

选择 键控频率

使用键盘输入"200"→选择单位"Hz"→200Hz

选择 极性 → 正相

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 PSK 波形,如图 3-14 所示:

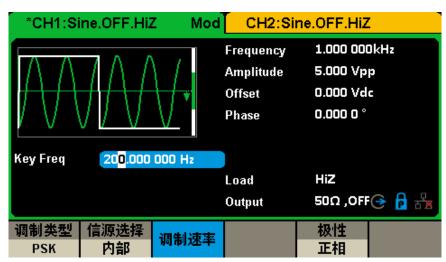


图 3-14 输出 PSK 调制波形

3.15 输出 PWM 调制波形

输出一个载波频率为 1KHz,调制频率为 100Hz,脉宽偏差为 100μs 的 PWM 波形。操作步骤如下:

设置载波的参数(脉冲)

选择 Waveforms → Pulse → 【频率/周期】 → 频率

使用数字键盘输入"1"→选择单位"KHz"→1KHz

选择【幅值/高电平】→ 幅值

使用数字键盘输入"4"→选择单位"Vpp"→4Vpp

选择【偏移量/低电平】→ 偏移量

使用数字键盘输入"0"→选择单位"Vdc"→0Vdc

选择【脉宽/占空比】→ 脉宽

使用数字键盘输入"200"→选择单位"µs"→200µs

选择调制方式并设置调制参数

选择 Mod

选择 调制频率

使用数字键盘输入"100"→选择单位"Hz"→100Hz

选择 脉宽偏差

数字键盘输入"100"→选择单位"μs"→100μs

选择 调制波形 → Sine

将载波和调制波设定完毕后,选择当前所编辑的通道输出,便可输出您设定的 PWM 波形,如图 3-15 所示:

图 3-15 输出 PWM 调制波形

4 一般性检查及故障排除

4.1 一般性检查

当您得到一台新的 SDG2000X 系列函数/任意波形发生器时,建议您按以下方式逐步进行检查。

查看是否存在因运输问题而造成的损坏

如您发现包装箱或泡沫塑料保护垫严重破坏,请先保留,直到整机和附件通过电性和机械性测试。

检查附件

关于提供的附件明细,在附录 A "SDG2000X 系列函数/任意波形发生器附件"中已有详细的说明,您可以参照此检查附件是否齐全。如发现附件有缺少或损坏,请与负责此业务的 SIGLENT 经销商或当地办事处联系。

检查整机

如果发现仪器外部损坏,且未能通过相应的测试,请与负责此业务的 SIGLENT 经销商或当地办事处联系,SIGLENT 会安排维修或更换新机。

4.2 故障排除

- 1. 如果按下电源开关, SDG2000X 系列函数/任意波形发生器 LCD 显示屏仍然是黑屏, 请按下列步骤处理:
 - 检查电源是否通电:
 - 检查电源开关是否接好:
 - 重新启动仪器:
 - 如果依然无法正常使用本产品,请与 SIGLENT 联系,让我们为您服务。
- 2. 设置正确但无波形输出,请按下列步骤处理:
 - 检查信号连接线是否正常接在 Output 端口上;
 - 检查 BNC 线是否连接良好:
 - 检查通道输出是否打开;
 - 做完以上检查后,将开机上电设置为上次设置并重新启动仪器。

5 服务和支持

5.1 保修概要

深圳市鼎阳科技股份有限公司保证所生产和销售的产品,从授权经销商发货之日起三年内,不会出现材料和工艺缺陷。如产品在保修期限内确有缺陷,SIGLENT将根据保修单的详细规定,提供修理或更换服务。

若需要服务或索取保修单的完整副本,请与最近的 SIGLENT 销售和服务办事处联系。除此概要或适用的保修单中所提供的保修之外,SIGLENT 不作其它任何明示或暗示的保修保证,包括但不限于对适销性和特殊适用性的暗含保修。SIGLENT 对间接的、特殊的或由此产生的损坏不承担任何责任。

5.2 联系我们

深圳市鼎阳科技股份有限公司

地址:深圳市宝安区 68 区留仙三路安通达工业园 4 栋 3 楼

服务热线: 400-878-0807

E-mail: market@siglent.com

http://www.siglent.com

附录 A

SDG2000X 系列函数/任意波形发生器附件

标准附件:

- 一根符合所在国标准的电源线
- 一根 USB 数据线
- 一套任意波绘制软件 EasyWave(网站免费下载)
- 一份产品合格证
- 一份产品校准报告
- 一本《快速指南》
- 一根 BNC 同轴电缆

选购附件:

USB-GPIB 适配器

SPA1010 功率放大器

20dB 衰减器

附录 B

默认设置

SDG2000X 系列函数/任意波形发生器默认设置如下:

项目	默认状态	
通道默认状态	关闭	
直流输出		
开启/关闭	关闭	
偏移量	OV	
基本波形		
频率	1kHz	
幅值	4V	
偏移量	OV	
相位	0°	
对称性	50%	
AM (默认)		
信源选择	内部	
调制波形	Sine	
调制频率	100Hz	
调制深度	100%	
FM		
信源选择	内部	
调制波形	Sine	
调制频率	100Hz	
频率偏差	100Hz	
PM		
信源选择	内部	
调制波形	Sine	

调制频率	100Hz	
相位偏差	100°	
ASK		
信源选择	内部	
键控频率	100Hz	
FSK		
信源选择	内部	
键控频率	100Hz	
跳频频率	1MHz	
PSK		
信源选择	内部	
调制速率	100Hz	
极性	正相	
PWM		
信源选择	内部	
调制波形	Sine	
调制频率	100Hz	
脉宽偏差	190µs	
Sweep		
扫描时间	1 s	
终止频率	1.5 KHz	
起始频率	500Hz	
频率范围	1 KHz	
中心频率	1 KHz	
触发源	内部	
触发输出	关闭	
扫描方式	线性	
扫描方向	\uparrow	
Burst		
脉冲周期	10ms	

起始相位	0.00°
脉冲模式	N循环
N循环数	1Cyc
触发源	内部
触发输出	关 闭
延迟	521ns

注:通道1和通道2的默认开机参数一样。

附录 C

日常保养和清洁

日常保养

存放或放置仪器时,请勿使液晶显示器长时间受阳光直射。

注意:

为避免损坏仪器或连接线,请勿将其置于雾气、液体或溶剂中。

清洁

根据操作情况经常对仪器和探头进行检查。请按下述步骤清洁仪器的外表面:

- 1. 使用质地柔软的抹布擦拭仪器和连接线外部的浮尘。清洁液晶显示屏时,注意不要划伤透明的塑料保护屏。
- 2. 使用一块用水浸湿的软布清洁仪器,请注意断开电源。

注意:

为避免损坏仪器或连接线的表面,请勿使用任何磨蚀性试剂或化学清洁试剂。

在重新通电使用前,请确认仪器已经干透,避免水分造成电气短路甚至人身伤害。

关于鼎阳

鼎阳科技(SIGLENT)是通用电子测试测量仪器领域的行业领军企业。同时,也是通用电子测试测量仪器行业第一家 A 股上市公司。

2002 年,鼎阳科技创始人开始专注于示波器研发,2005 年成功研制出第一款数字示波器。历经多年发展,鼎阳产品已扩展到数字示波器、手持示波表、函数/任意波形发生器、频谱分析仪、矢量网络分析仪、射频/微波信号源、台式万用表、直流电源、电子负载等基础测试测量仪器产品,是全球极少数能够同时研发、生产、销售数字示波器、信号发生器、频谱分析仪和矢量网络分析仪四大通用电子测试测量仪器主力产品的厂家之一,国家级重点"小巨人"企业。同时也是国内主要竞争对手中极少数同时拥有这四大主力产品并且四大主力产品全线进入高端领域的厂家。公司总部位于深圳,在美国克利夫兰和德国奥格斯堡成立了子公司,在成都成立了分公司,产品远销全球80多个国家和地区,SIGLENT已经成为全球知名的测试测量仪器品牌。

联系我们

深圳市鼎阳科技股份有限公司 全国免费服务热线: 400-878-0807

网址: www.siglent.com

声明

⇒ SIGLENT 網門是深圳市鼎阳科技股份有限公司的注册商标,事先未经过允许,不得以任何形式或通过任何方式复制本手册中的任何内容。本资料中的信息代替原先的此前所有版本。技术数据如有变更,恕不另行通告。

技术许可

对于本文档中描述的硬件和软件,仅在得到许可的情况下才会提供,并且只能根据许可进行使用或复制。

